{"title":"金属离子与细小蛋白结合。质子核磁共振研究。","authors":"E Ragg, A Cavé, T Drakenberg","doi":"10.3891/acta.chem.scand.40b-0006","DOIUrl":null,"url":null,"abstract":"<p><p>The 1H NMR spectra of carp parvalbumin saturated with Ca2+, Cd2+, La3+ and Lu3+ were compared, using 2D 1H NMR techniques as well as conventional 1H NMR spectra. The Ca2+ and Cd2+ saturated parvalbumin (with both high affinity Ca2+-binding sites occupied) gave rise to very similar spectra. This shows that these two species have almost identical protein conformations. The 1H NMR spectrum from the Ln3+ saturated parvalbumins deviated from the other two and it was therefore concluded that Cd2+ is a better probe for Ca2+ than Ln3+ in parvalbumin and probably also for related calcium binding proteins. The addition of excess of divalent metal ions, such as Mg2+ or Ca2+, causes small changes in the chemical shift of some methyl resonances. This is presumably caused by binding of these metal ions to a third site close to the CD site which is made up of the carboxylic groups from Glu 60 and Asp 61.</p>","PeriodicalId":6886,"journal":{"name":"Acta chemica Scandinavica. Series B: Organic chemistry and biochemistry","volume":"40 1","pages":"6-14"},"PeriodicalIF":0.0000,"publicationDate":"1986-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Metal ion binding to parvalbumin. A proton NMR study.\",\"authors\":\"E Ragg, A Cavé, T Drakenberg\",\"doi\":\"10.3891/acta.chem.scand.40b-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The 1H NMR spectra of carp parvalbumin saturated with Ca2+, Cd2+, La3+ and Lu3+ were compared, using 2D 1H NMR techniques as well as conventional 1H NMR spectra. The Ca2+ and Cd2+ saturated parvalbumin (with both high affinity Ca2+-binding sites occupied) gave rise to very similar spectra. This shows that these two species have almost identical protein conformations. The 1H NMR spectrum from the Ln3+ saturated parvalbumins deviated from the other two and it was therefore concluded that Cd2+ is a better probe for Ca2+ than Ln3+ in parvalbumin and probably also for related calcium binding proteins. The addition of excess of divalent metal ions, such as Mg2+ or Ca2+, causes small changes in the chemical shift of some methyl resonances. This is presumably caused by binding of these metal ions to a third site close to the CD site which is made up of the carboxylic groups from Glu 60 and Asp 61.</p>\",\"PeriodicalId\":6886,\"journal\":{\"name\":\"Acta chemica Scandinavica. Series B: Organic chemistry and biochemistry\",\"volume\":\"40 1\",\"pages\":\"6-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta chemica Scandinavica. Series B: Organic chemistry and biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3891/acta.chem.scand.40b-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta chemica Scandinavica. Series B: Organic chemistry and biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3891/acta.chem.scand.40b-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Metal ion binding to parvalbumin. A proton NMR study.
The 1H NMR spectra of carp parvalbumin saturated with Ca2+, Cd2+, La3+ and Lu3+ were compared, using 2D 1H NMR techniques as well as conventional 1H NMR spectra. The Ca2+ and Cd2+ saturated parvalbumin (with both high affinity Ca2+-binding sites occupied) gave rise to very similar spectra. This shows that these two species have almost identical protein conformations. The 1H NMR spectrum from the Ln3+ saturated parvalbumins deviated from the other two and it was therefore concluded that Cd2+ is a better probe for Ca2+ than Ln3+ in parvalbumin and probably also for related calcium binding proteins. The addition of excess of divalent metal ions, such as Mg2+ or Ca2+, causes small changes in the chemical shift of some methyl resonances. This is presumably caused by binding of these metal ions to a third site close to the CD site which is made up of the carboxylic groups from Glu 60 and Asp 61.