长期暴露于环境压力下,脑儿茶酚胺合成、垂体肾上腺功能与高血压产生的关系

Harold H. Smookler, Joseph P. Buckley
{"title":"长期暴露于环境压力下,脑儿茶酚胺合成、垂体肾上腺功能与高血压产生的关系","authors":"Harold H. Smookler,&nbsp;Joseph P. Buckley","doi":"10.1016/0028-3908(69)90032-X","DOIUrl":null,"url":null,"abstract":"<div><p>Male rats were subjected to environmental stresses consisting of flashing lights, audiogenic stimulation and oscillation for 20 weeks on a randomized schedule. The mean systolic blood pressure in the stressed animals rose to 150mm Hg±1.01 by week 8 and ranged between 150 and 160 mm Hg for the remaining 12 weeks, whereas the mean systolic pressure of the non-stressed animals fluctuated between 110 and 120mm Hg throughout this same period of time. Serum corticosterone level in the stressed animals were approximately 3 times higher than controls for the first 4 weeks of exposure; however, by the end of week 5. serum corticosterone declined dramatically in the stressed group and was significantly lower than controls, after which serum corticosterone levels exhibited a cyclic pattern at approximately 6-week intervals. No significant alterations were observed in brain NE and DA and serum FFA throughout the 20-week stress exposure. In a second study, rats received 100 mg kg p.o. of<span>L</span>-α-methyltyrosine. At the end of weeks 2 and 4, brain NE was depleted by more than 80° in the stressed treated group, whereas brain NE in the non-stressed treated animals was depleted by approximately 45°. indicating a significant increase in the turnover of brain NE The elevated turnover of brain NE returned to control values by the end of the 6th week. In addition, a-MT prevented the stress-induced elevation in systolic blood pressure. These data indicate a close temporal relationship between brain NE synthesis rate and adrenocortical steroid secretion as well as demonstrating that a-MT is an effective antihypertensive agent in stress-induced hypertension.</p></div>","PeriodicalId":14111,"journal":{"name":"International journal of neuropharmacology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1969-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0028-3908(69)90032-X","citationCount":"52","resultStr":"{\"title\":\"Relationships between brain catecholamine synthesis, pituitary adrenal function and the production of hypertension during prolonged exposure to environmental stress\",\"authors\":\"Harold H. Smookler,&nbsp;Joseph P. Buckley\",\"doi\":\"10.1016/0028-3908(69)90032-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Male rats were subjected to environmental stresses consisting of flashing lights, audiogenic stimulation and oscillation for 20 weeks on a randomized schedule. The mean systolic blood pressure in the stressed animals rose to 150mm Hg±1.01 by week 8 and ranged between 150 and 160 mm Hg for the remaining 12 weeks, whereas the mean systolic pressure of the non-stressed animals fluctuated between 110 and 120mm Hg throughout this same period of time. Serum corticosterone level in the stressed animals were approximately 3 times higher than controls for the first 4 weeks of exposure; however, by the end of week 5. serum corticosterone declined dramatically in the stressed group and was significantly lower than controls, after which serum corticosterone levels exhibited a cyclic pattern at approximately 6-week intervals. No significant alterations were observed in brain NE and DA and serum FFA throughout the 20-week stress exposure. In a second study, rats received 100 mg kg p.o. of<span>L</span>-α-methyltyrosine. At the end of weeks 2 and 4, brain NE was depleted by more than 80° in the stressed treated group, whereas brain NE in the non-stressed treated animals was depleted by approximately 45°. indicating a significant increase in the turnover of brain NE The elevated turnover of brain NE returned to control values by the end of the 6th week. In addition, a-MT prevented the stress-induced elevation in systolic blood pressure. These data indicate a close temporal relationship between brain NE synthesis rate and adrenocortical steroid secretion as well as demonstrating that a-MT is an effective antihypertensive agent in stress-induced hypertension.</p></div>\",\"PeriodicalId\":14111,\"journal\":{\"name\":\"International journal of neuropharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1969-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0028-3908(69)90032-X\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of neuropharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/002839086990032X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neuropharmacology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/002839086990032X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

以雄性大鼠为实验对象,随机接受闪光灯、听力学刺激和振荡等环境应激20周。应激动物的平均收缩压在第8周上升到150mm Hg±1.01,其余12周在150 - 160 mm Hg之间波动,而非应激动物的平均收缩压在同一时期内波动在110 - 120mm Hg之间。应激动物的血清皮质酮水平在暴露的前4周约为对照的3倍;然而,在第五周结束时。应激组血清皮质酮水平显著下降,且显著低于对照组,应激组血清皮质酮水平每6周左右出现周期性变化。在整个20周的应激暴露过程中,未观察到脑NE、DA和血清FFA的显著变化。在第二项研究中,大鼠每天服用100 mg kg的l -α-甲基酪氨酸。在第2周和第4周结束时,应激处理组的脑NE减少了80°以上,而非应激处理组的脑NE减少了约45°。在第6周结束时,高水平的脑NE周转率恢复到对照值。此外,a-MT可防止应激性收缩压升高。这些数据表明脑NE合成速率与肾上腺皮质类固醇分泌之间存在密切的时间关系,并表明a- mt是应激性高血压的有效降压药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Relationships between brain catecholamine synthesis, pituitary adrenal function and the production of hypertension during prolonged exposure to environmental stress

Male rats were subjected to environmental stresses consisting of flashing lights, audiogenic stimulation and oscillation for 20 weeks on a randomized schedule. The mean systolic blood pressure in the stressed animals rose to 150mm Hg±1.01 by week 8 and ranged between 150 and 160 mm Hg for the remaining 12 weeks, whereas the mean systolic pressure of the non-stressed animals fluctuated between 110 and 120mm Hg throughout this same period of time. Serum corticosterone level in the stressed animals were approximately 3 times higher than controls for the first 4 weeks of exposure; however, by the end of week 5. serum corticosterone declined dramatically in the stressed group and was significantly lower than controls, after which serum corticosterone levels exhibited a cyclic pattern at approximately 6-week intervals. No significant alterations were observed in brain NE and DA and serum FFA throughout the 20-week stress exposure. In a second study, rats received 100 mg kg p.o. ofL-α-methyltyrosine. At the end of weeks 2 and 4, brain NE was depleted by more than 80° in the stressed treated group, whereas brain NE in the non-stressed treated animals was depleted by approximately 45°. indicating a significant increase in the turnover of brain NE The elevated turnover of brain NE returned to control values by the end of the 6th week. In addition, a-MT prevented the stress-induced elevation in systolic blood pressure. These data indicate a close temporal relationship between brain NE synthesis rate and adrenocortical steroid secretion as well as demonstrating that a-MT is an effective antihypertensive agent in stress-induced hypertension.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental alteration of tryptophan metabolism by methionine: Neuropharmacologic implications Noradrenaline sensitive cells in cat cerebral cortex Alteration of centrally mediated cardiovascular manifestations by intraventricular pronethalol and phentolamine Evidence for biogenic amine receptors in toad sciatic nerves Comparative study of the actions of nicotine and succinylcholine on the monosynaptic reflex and spindle afferent activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1