{"title":"螺旋度和疏水性对富含精氨酸肽穿透细胞能力的影响","authors":"Makoto Oba , Shun Nakajima , Kurumi Misao , Hidetomo Yokoo , Masakazu Tanaka","doi":"10.1016/j.bmc.2023.117409","DOIUrl":null,"url":null,"abstract":"<div><p><span>Arginine (Arg)-rich peptides are one of the typical cell-penetrating peptides (CPPs), which can deliver membrane-impermeable compounds into intracellular compartments. Guanidino groups in Arg-rich peptides are critical for their high cell-penetrating ability, although it remains unclear whether peptide </span>secondary structures<span> contribute to this ability. In the current study, we designed four Arg-rich peptides containing α,α-disubstituted α-amino acids (dAAs), which prefer to adopt a helical structure<span>. The four dAA-containing peptides adopted slightly different peptide secondary structures, from a random structure to a helical structure, with different hydrophobicities. In these peptides, dipropylglycine-containing peptide exhibited the highest helicity and hydrophobicity, and showed the best cell-penetrating ability. These findings suggested that the helicity and hydrophobicity of Arg-rich peptides contributes to their high cell-penetrating ability.</span></span></p></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"91 ","pages":"Article 117409"},"PeriodicalIF":3.3000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of helicity and hydrophobicity on cell-penetrating ability of arginine-rich peptides\",\"authors\":\"Makoto Oba , Shun Nakajima , Kurumi Misao , Hidetomo Yokoo , Masakazu Tanaka\",\"doi\":\"10.1016/j.bmc.2023.117409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Arginine (Arg)-rich peptides are one of the typical cell-penetrating peptides (CPPs), which can deliver membrane-impermeable compounds into intracellular compartments. Guanidino groups in Arg-rich peptides are critical for their high cell-penetrating ability, although it remains unclear whether peptide </span>secondary structures<span> contribute to this ability. In the current study, we designed four Arg-rich peptides containing α,α-disubstituted α-amino acids (dAAs), which prefer to adopt a helical structure<span>. The four dAA-containing peptides adopted slightly different peptide secondary structures, from a random structure to a helical structure, with different hydrophobicities. In these peptides, dipropylglycine-containing peptide exhibited the highest helicity and hydrophobicity, and showed the best cell-penetrating ability. These findings suggested that the helicity and hydrophobicity of Arg-rich peptides contributes to their high cell-penetrating ability.</span></span></p></div>\",\"PeriodicalId\":255,\"journal\":{\"name\":\"Bioorganic & Medicinal Chemistry\",\"volume\":\"91 \",\"pages\":\"Article 117409\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic & Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968089623002572\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089623002572","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effect of helicity and hydrophobicity on cell-penetrating ability of arginine-rich peptides
Arginine (Arg)-rich peptides are one of the typical cell-penetrating peptides (CPPs), which can deliver membrane-impermeable compounds into intracellular compartments. Guanidino groups in Arg-rich peptides are critical for their high cell-penetrating ability, although it remains unclear whether peptide secondary structures contribute to this ability. In the current study, we designed four Arg-rich peptides containing α,α-disubstituted α-amino acids (dAAs), which prefer to adopt a helical structure. The four dAA-containing peptides adopted slightly different peptide secondary structures, from a random structure to a helical structure, with different hydrophobicities. In these peptides, dipropylglycine-containing peptide exhibited the highest helicity and hydrophobicity, and showed the best cell-penetrating ability. These findings suggested that the helicity and hydrophobicity of Arg-rich peptides contributes to their high cell-penetrating ability.
期刊介绍:
Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides.
The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.