{"title":"洗净兔血小板中甲哌辛诱导的环GMP水平升高和adp诱导的聚集逆转加速。","authors":"I Matsuoka, T Suzuki","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Mepacrine, a phospholipase A2 inhibitor, caused concentration-dependent elevations of cyclic GMP levels without changing cyclic AMP levels in washed rabbit platelets. Mepacrine (100 microM) increased cyclic GMP levels to a peak (25-fold of basal level) within 4 min. Mepacrine had no effect on platelet guanylate cyclase and cyclic AMP phosphodiesterase but selectively inhibited cyclic GMP phosphodiesterase, indicating that mepacrine may elevate platelet cyclic GMP levels as a result of inhibiting cyclic GMP breakdown. In addition, mepacrine accelerated the disaggregation of platelets which had been aggregated maximally by ADP. This effect was associated with elevated cyclic GMP levels. Likewise, sodium nitroprusside and sodium ascorbate, which also elevate platelet cyclic GMP levels, caused marked disaggregation. The increases in cyclic GMP levels with these agents were well correlated with the extent of disaggregation, suggesting that cyclic GMP may mediate a process opposing platelet aggregation and that the mepacrine-induced acceleration of disaggregation may be mediated by cyclic GMP.</p>","PeriodicalId":15406,"journal":{"name":"Journal of cyclic nucleotide and protein phosphorylation research","volume":"9 4-5","pages":"341-53"},"PeriodicalIF":0.0000,"publicationDate":"1983-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mepacrine-induced elevation of cyclic GMP levels and acceleration of reversal of ADP-induced aggregation in washed rabbit platelets.\",\"authors\":\"I Matsuoka, T Suzuki\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mepacrine, a phospholipase A2 inhibitor, caused concentration-dependent elevations of cyclic GMP levels without changing cyclic AMP levels in washed rabbit platelets. Mepacrine (100 microM) increased cyclic GMP levels to a peak (25-fold of basal level) within 4 min. Mepacrine had no effect on platelet guanylate cyclase and cyclic AMP phosphodiesterase but selectively inhibited cyclic GMP phosphodiesterase, indicating that mepacrine may elevate platelet cyclic GMP levels as a result of inhibiting cyclic GMP breakdown. In addition, mepacrine accelerated the disaggregation of platelets which had been aggregated maximally by ADP. This effect was associated with elevated cyclic GMP levels. Likewise, sodium nitroprusside and sodium ascorbate, which also elevate platelet cyclic GMP levels, caused marked disaggregation. The increases in cyclic GMP levels with these agents were well correlated with the extent of disaggregation, suggesting that cyclic GMP may mediate a process opposing platelet aggregation and that the mepacrine-induced acceleration of disaggregation may be mediated by cyclic GMP.</p>\",\"PeriodicalId\":15406,\"journal\":{\"name\":\"Journal of cyclic nucleotide and protein phosphorylation research\",\"volume\":\"9 4-5\",\"pages\":\"341-53\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1983-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cyclic nucleotide and protein phosphorylation research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cyclic nucleotide and protein phosphorylation research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mepacrine-induced elevation of cyclic GMP levels and acceleration of reversal of ADP-induced aggregation in washed rabbit platelets.
Mepacrine, a phospholipase A2 inhibitor, caused concentration-dependent elevations of cyclic GMP levels without changing cyclic AMP levels in washed rabbit platelets. Mepacrine (100 microM) increased cyclic GMP levels to a peak (25-fold of basal level) within 4 min. Mepacrine had no effect on platelet guanylate cyclase and cyclic AMP phosphodiesterase but selectively inhibited cyclic GMP phosphodiesterase, indicating that mepacrine may elevate platelet cyclic GMP levels as a result of inhibiting cyclic GMP breakdown. In addition, mepacrine accelerated the disaggregation of platelets which had been aggregated maximally by ADP. This effect was associated with elevated cyclic GMP levels. Likewise, sodium nitroprusside and sodium ascorbate, which also elevate platelet cyclic GMP levels, caused marked disaggregation. The increases in cyclic GMP levels with these agents were well correlated with the extent of disaggregation, suggesting that cyclic GMP may mediate a process opposing platelet aggregation and that the mepacrine-induced acceleration of disaggregation may be mediated by cyclic GMP.