{"title":"三肽基羧基肽酶活性(血管紧张素转换酶)","authors":"Jin-Ichi Inokuchi, Atsuo Nagamatsu","doi":"10.1016/0005-2744(81)90042-5","DOIUrl":null,"url":null,"abstract":"<div><p>The degradation of des-Arg<sup>9</sup>-bradykinin and its analogues by highly purified preparations of hog lung and kidney kininase II (angiotensin-converting enzyme; peptidyldipeptide hydrolase, EC 3.4.15.1) was studied. The degradative peptide fragments were separated and isolated by high performance liquid chromatography and identified by amino acid analysis. Both enzymes released C-terminal tripeptides from des-Arg<sup>9</sup>-bradykinin, des-Arg<sup>9</sup>-(Leu<sup>8</sup>)-bradykinin, Pro-Pro-Gly-Phe-Ser-Pro-Phe, Pro-Gly-Phe-Ser-Pro-Phe, Gly-Phe-Ser-Pro-Phe, Bz-Gly-Ser-Pro-Phe and Bz-Gly-Ala-Pro-Phe. Hydrolysis of Phe-Ser-Pro-Phe, Bz-Gly-His-Pro-Phe, Bz-Gly-Phe-Pro-Phe and Bz-Gly-Gly-Pro-Phe by both enzymes was negligible. These data indicate that kininase II can release C-terminal tripeptides of substrates having a proline residue in the penultimate position such as des-Arg<sup>9</sup>-bradykinin and its analogues, and that this enzyme is able not only to act as a dipeptidyl carboxypeptidase but also acts as a tripeptidyl carboxypeptidase. The tripeptidyl carboxypeptidase activity of this enzyme was sensitive to inhibition by kininase II inhibitors.</p></div>","PeriodicalId":100159,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Enzymology","volume":"662 2","pages":"Pages 300-307"},"PeriodicalIF":0.0000,"publicationDate":"1981-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0005-2744(81)90042-5","citationCount":"47","resultStr":"{\"title\":\"Tripeptidyl carboxypeptidase activity of kininase II (angiotensin-converting enzyme)\",\"authors\":\"Jin-Ichi Inokuchi, Atsuo Nagamatsu\",\"doi\":\"10.1016/0005-2744(81)90042-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The degradation of des-Arg<sup>9</sup>-bradykinin and its analogues by highly purified preparations of hog lung and kidney kininase II (angiotensin-converting enzyme; peptidyldipeptide hydrolase, EC 3.4.15.1) was studied. The degradative peptide fragments were separated and isolated by high performance liquid chromatography and identified by amino acid analysis. Both enzymes released C-terminal tripeptides from des-Arg<sup>9</sup>-bradykinin, des-Arg<sup>9</sup>-(Leu<sup>8</sup>)-bradykinin, Pro-Pro-Gly-Phe-Ser-Pro-Phe, Pro-Gly-Phe-Ser-Pro-Phe, Gly-Phe-Ser-Pro-Phe, Bz-Gly-Ser-Pro-Phe and Bz-Gly-Ala-Pro-Phe. Hydrolysis of Phe-Ser-Pro-Phe, Bz-Gly-His-Pro-Phe, Bz-Gly-Phe-Pro-Phe and Bz-Gly-Gly-Pro-Phe by both enzymes was negligible. These data indicate that kininase II can release C-terminal tripeptides of substrates having a proline residue in the penultimate position such as des-Arg<sup>9</sup>-bradykinin and its analogues, and that this enzyme is able not only to act as a dipeptidyl carboxypeptidase but also acts as a tripeptidyl carboxypeptidase. The tripeptidyl carboxypeptidase activity of this enzyme was sensitive to inhibition by kininase II inhibitors.</p></div>\",\"PeriodicalId\":100159,\"journal\":{\"name\":\"Biochimica et Biophysica Acta (BBA) - Enzymology\",\"volume\":\"662 2\",\"pages\":\"Pages 300-307\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1981-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0005-2744(81)90042-5\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta (BBA) - Enzymology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0005274481900425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta (BBA) - Enzymology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0005274481900425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tripeptidyl carboxypeptidase activity of kininase II (angiotensin-converting enzyme)
The degradation of des-Arg9-bradykinin and its analogues by highly purified preparations of hog lung and kidney kininase II (angiotensin-converting enzyme; peptidyldipeptide hydrolase, EC 3.4.15.1) was studied. The degradative peptide fragments were separated and isolated by high performance liquid chromatography and identified by amino acid analysis. Both enzymes released C-terminal tripeptides from des-Arg9-bradykinin, des-Arg9-(Leu8)-bradykinin, Pro-Pro-Gly-Phe-Ser-Pro-Phe, Pro-Gly-Phe-Ser-Pro-Phe, Gly-Phe-Ser-Pro-Phe, Bz-Gly-Ser-Pro-Phe and Bz-Gly-Ala-Pro-Phe. Hydrolysis of Phe-Ser-Pro-Phe, Bz-Gly-His-Pro-Phe, Bz-Gly-Phe-Pro-Phe and Bz-Gly-Gly-Pro-Phe by both enzymes was negligible. These data indicate that kininase II can release C-terminal tripeptides of substrates having a proline residue in the penultimate position such as des-Arg9-bradykinin and its analogues, and that this enzyme is able not only to act as a dipeptidyl carboxypeptidase but also acts as a tripeptidyl carboxypeptidase. The tripeptidyl carboxypeptidase activity of this enzyme was sensitive to inhibition by kininase II inhibitors.