细胞静息电位和动作电位:基于联想-诱导假说的解释。

Physiological chemistry and physics Pub Date : 1982-01-01
G N Ling
{"title":"细胞静息电位和动作电位:基于联想-诱导假说的解释。","authors":"G N Ling","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The Hodgkin, Huxley, and Katz theories of resting and action potentials are based on the membrane theory, which holds that cell K+ and water exist in the free state. Reviewed here are these theories of cellular potential along with the results of experimental testings. Reviewed also is Ling's association-induction (AI) hypothesis, which holds that all K+ is absorbed selectively and singly on anionic protein sites and that cell water is absorbed in multilayers on extended chains of \"matrix proteins.\" In the development of the AI model, molecular mechanisms of cell permeation and electric potentials were presented according to which the potentials are surface-adsorption phenomena. Thus they resemble those suggested by Baur rather than the membrane potentials proposed by Ostwald and Bernstein. In the present review it is shown that the AI version of the surface adsorption model can account for evidence supporting the Hodgkin, Huxley, Katz approach as well as evidence against it-including extensive recent confirmation of the absorbed state of K+ in muscle.</p>","PeriodicalId":20124,"journal":{"name":"Physiological chemistry and physics","volume":"14 1","pages":"47-96"},"PeriodicalIF":0.0000,"publicationDate":"1982-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The cellular resting and action potentials: interpretation based on the association-induction hypothesis.\",\"authors\":\"G N Ling\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Hodgkin, Huxley, and Katz theories of resting and action potentials are based on the membrane theory, which holds that cell K+ and water exist in the free state. Reviewed here are these theories of cellular potential along with the results of experimental testings. Reviewed also is Ling's association-induction (AI) hypothesis, which holds that all K+ is absorbed selectively and singly on anionic protein sites and that cell water is absorbed in multilayers on extended chains of \\\"matrix proteins.\\\" In the development of the AI model, molecular mechanisms of cell permeation and electric potentials were presented according to which the potentials are surface-adsorption phenomena. Thus they resemble those suggested by Baur rather than the membrane potentials proposed by Ostwald and Bernstein. In the present review it is shown that the AI version of the surface adsorption model can account for evidence supporting the Hodgkin, Huxley, Katz approach as well as evidence against it-including extensive recent confirmation of the absorbed state of K+ in muscle.</p>\",\"PeriodicalId\":20124,\"journal\":{\"name\":\"Physiological chemistry and physics\",\"volume\":\"14 1\",\"pages\":\"47-96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1982-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological chemistry and physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological chemistry and physics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

霍奇金、赫胥黎和卡茨的静息电位和动作电位理论是建立在膜理论的基础上的,该理论认为细胞中的钾离子和水以自由状态存在。本文就这些细胞电位理论及实验结果进行综述。Ling的关联诱导(association-induction, AI)假说也进行了回顾,该假说认为,所有的K+都是选择性地、单一地在阴离子蛋白位点上被吸收,而细胞水是在“基质蛋白”的延伸链上被多层吸收的。在AI模型的开发中,提出了细胞渗透和电势的分子机制,根据电势是表面吸附现象。因此,它们类似于Baur提出的膜电位,而不是Ostwald和Bernstein提出的膜电位。在本综述中表明,人工智能版本的表面吸附模型可以解释支持Hodgkin, Huxley, Katz方法的证据,也可以解释反对它的证据,包括最近对肌肉中K+吸收状态的广泛确认。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The cellular resting and action potentials: interpretation based on the association-induction hypothesis.

The Hodgkin, Huxley, and Katz theories of resting and action potentials are based on the membrane theory, which holds that cell K+ and water exist in the free state. Reviewed here are these theories of cellular potential along with the results of experimental testings. Reviewed also is Ling's association-induction (AI) hypothesis, which holds that all K+ is absorbed selectively and singly on anionic protein sites and that cell water is absorbed in multilayers on extended chains of "matrix proteins." In the development of the AI model, molecular mechanisms of cell permeation and electric potentials were presented according to which the potentials are surface-adsorption phenomena. Thus they resemble those suggested by Baur rather than the membrane potentials proposed by Ostwald and Bernstein. In the present review it is shown that the AI version of the surface adsorption model can account for evidence supporting the Hodgkin, Huxley, Katz approach as well as evidence against it-including extensive recent confirmation of the absorbed state of K+ in muscle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Binding of inactivated tyrosine aminotransferase to microsomal membranes. Comparative studies on the enzymological and contractile properties of glycerinated muscle fibers and actomyosin suspensions. Kinetic studies on the initial contraction dependent high ATPase activity of actomyosin molecules. The cellular resting and action potentials: interpretation based on the association-induction hypothesis. Oxidation of tyrosine to dopachrome by peroxidase isolated from murine melanoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1