{"title":"哺乳动物氧化磷酸化系统的生化遗传学:不同中国仓鼠细胞系对线粒体ATP合成酶复合物抑制剂敏感性差异的分析。","authors":"W A Simmons, G A Breen","doi":"10.1007/BF01574258","DOIUrl":null,"url":null,"abstract":"<p><p>Seven different Chinese hamster cell lines were found to vary greatly in their sensitivity to inhibitors of the mitochondrial ATPase. In plating-efficiency experiments, Chinese hamster lung V79 and bone marrow M3-1 cells were approximately 10,000-fold more resistant to oligomycin, 100-fold more resistant to efrapeptin, and 10-fold more resistant to ossamycin and leucinostatin than were ovary CHO or peritoneal B14 cells. In vitro experiments indicated that the increased resistance of V79 versus CHO cells to these inhibitors was due to an increased resistance of the mitochondrial ATPase. Heat-inactivation experiments indicated that there was a difference in the structure of the mitochondrial ATPase of V79 and CHO cells. Genetic experiments indicated that the difference in the sensitivity of V79 and CHO cells to inhibitors of the ATPase and the difference in the structure of the mitochondrial ATPase of V79 and CHO cells was due to a difference in both a nuclear and a cytoplasmic gene.</p>","PeriodicalId":21767,"journal":{"name":"Somatic Cell Genetics","volume":"9 5","pages":"549-66"},"PeriodicalIF":0.0000,"publicationDate":"1983-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF01574258","citationCount":"3","resultStr":"{\"title\":\"Biochemical genetics of the mammalian oxidative phosphorylation system: analysis of the difference in the sensitivity of various Chinese hamster cell lines to inhibitors of the mitochondrial ATP synthase complex.\",\"authors\":\"W A Simmons, G A Breen\",\"doi\":\"10.1007/BF01574258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Seven different Chinese hamster cell lines were found to vary greatly in their sensitivity to inhibitors of the mitochondrial ATPase. In plating-efficiency experiments, Chinese hamster lung V79 and bone marrow M3-1 cells were approximately 10,000-fold more resistant to oligomycin, 100-fold more resistant to efrapeptin, and 10-fold more resistant to ossamycin and leucinostatin than were ovary CHO or peritoneal B14 cells. In vitro experiments indicated that the increased resistance of V79 versus CHO cells to these inhibitors was due to an increased resistance of the mitochondrial ATPase. Heat-inactivation experiments indicated that there was a difference in the structure of the mitochondrial ATPase of V79 and CHO cells. Genetic experiments indicated that the difference in the sensitivity of V79 and CHO cells to inhibitors of the ATPase and the difference in the structure of the mitochondrial ATPase of V79 and CHO cells was due to a difference in both a nuclear and a cytoplasmic gene.</p>\",\"PeriodicalId\":21767,\"journal\":{\"name\":\"Somatic Cell Genetics\",\"volume\":\"9 5\",\"pages\":\"549-66\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1983-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/BF01574258\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Somatic Cell Genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/BF01574258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Somatic Cell Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF01574258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biochemical genetics of the mammalian oxidative phosphorylation system: analysis of the difference in the sensitivity of various Chinese hamster cell lines to inhibitors of the mitochondrial ATP synthase complex.
Seven different Chinese hamster cell lines were found to vary greatly in their sensitivity to inhibitors of the mitochondrial ATPase. In plating-efficiency experiments, Chinese hamster lung V79 and bone marrow M3-1 cells were approximately 10,000-fold more resistant to oligomycin, 100-fold more resistant to efrapeptin, and 10-fold more resistant to ossamycin and leucinostatin than were ovary CHO or peritoneal B14 cells. In vitro experiments indicated that the increased resistance of V79 versus CHO cells to these inhibitors was due to an increased resistance of the mitochondrial ATPase. Heat-inactivation experiments indicated that there was a difference in the structure of the mitochondrial ATPase of V79 and CHO cells. Genetic experiments indicated that the difference in the sensitivity of V79 and CHO cells to inhibitors of the ATPase and the difference in the structure of the mitochondrial ATPase of V79 and CHO cells was due to a difference in both a nuclear and a cytoplasmic gene.