神经元-星形胶质细胞的体外相互作用及其对中枢神经系统损伤修复的意义。

M E Hatten, C A Mason, R K Liem, J C Edmondson, P Bovolenta, M L Shelanski
{"title":"神经元-星形胶质细胞的体外相互作用及其对中枢神经系统损伤修复的意义。","authors":"M E Hatten,&nbsp;C A Mason,&nbsp;R K Liem,&nbsp;J C Edmondson,&nbsp;P Bovolenta,&nbsp;M L Shelanski","doi":"10.1089/cns.1984.1.15","DOIUrl":null,"url":null,"abstract":"<p><p>To study neuron-glial interactions, our laboratory has developed an in vitro model system that, when used with cell type-specific antisera, allows visualization of contacts between cerebellar granule neurons and astroglia. When cells were dissociated from early postnatal mouse cerebellum and plated in microcultures, the neurons aligned along glial filament protein (GFP)-containing astroglial processes. The behavior of the neurons depended on the shape of the particular astroglial cell that they contacted. Neuronal migration commonly occurred along highly elongated astroglial processes of Bergmann-like glia but was inhibited when neurons nestled among the arms of stellate astroglia. To analyze the influence of neurons on the astroglial shapes associated with neuronal migration, cerebellar granule neurons and astroglia were purified and recombined. In the absence of neurons, cerebellar astroglia assumed a flattened shape and proliferated rapidly. In the absence of astroglia, neurite outgrowth was severely impaired. When neurons were recombined with purified astroglia, astroglial proliferation slowed markedly, the shape of the astroglia transformed into complex forms, and neuron-glial interactions were seen. In tissue sections, immature forms of glia were found in the developing cerebellar axon tracts, but no obvious relationship could be discerned between the growing axonal tips and the glia. At P7, a period when the growth of cerebellar axons slows markedly, a transient natural gliosis was seen in the putative white matter. These studies underscore the interdependence of neurons and astroglia during periods of neuron differentiation and neurite outgrowth. In addition, they raise the possibility that the disruption of normal neuronal-astroglial contacts suffered during CNS injury could lead to defects in astroglial form and surface properties that, in turn, might impair axon regrowth.</p>","PeriodicalId":77690,"journal":{"name":"Central nervous system trauma : journal of the American Paralysis Association","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1984-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/cns.1984.1.15","citationCount":"25","resultStr":"{\"title\":\"Neuron-astroglial interactions in vitro and their implications for repair of CNS injury.\",\"authors\":\"M E Hatten,&nbsp;C A Mason,&nbsp;R K Liem,&nbsp;J C Edmondson,&nbsp;P Bovolenta,&nbsp;M L Shelanski\",\"doi\":\"10.1089/cns.1984.1.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To study neuron-glial interactions, our laboratory has developed an in vitro model system that, when used with cell type-specific antisera, allows visualization of contacts between cerebellar granule neurons and astroglia. When cells were dissociated from early postnatal mouse cerebellum and plated in microcultures, the neurons aligned along glial filament protein (GFP)-containing astroglial processes. The behavior of the neurons depended on the shape of the particular astroglial cell that they contacted. Neuronal migration commonly occurred along highly elongated astroglial processes of Bergmann-like glia but was inhibited when neurons nestled among the arms of stellate astroglia. To analyze the influence of neurons on the astroglial shapes associated with neuronal migration, cerebellar granule neurons and astroglia were purified and recombined. In the absence of neurons, cerebellar astroglia assumed a flattened shape and proliferated rapidly. In the absence of astroglia, neurite outgrowth was severely impaired. When neurons were recombined with purified astroglia, astroglial proliferation slowed markedly, the shape of the astroglia transformed into complex forms, and neuron-glial interactions were seen. In tissue sections, immature forms of glia were found in the developing cerebellar axon tracts, but no obvious relationship could be discerned between the growing axonal tips and the glia. At P7, a period when the growth of cerebellar axons slows markedly, a transient natural gliosis was seen in the putative white matter. These studies underscore the interdependence of neurons and astroglia during periods of neuron differentiation and neurite outgrowth. In addition, they raise the possibility that the disruption of normal neuronal-astroglial contacts suffered during CNS injury could lead to defects in astroglial form and surface properties that, in turn, might impair axon regrowth.</p>\",\"PeriodicalId\":77690,\"journal\":{\"name\":\"Central nervous system trauma : journal of the American Paralysis Association\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1984-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/cns.1984.1.15\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central nervous system trauma : journal of the American Paralysis Association\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/cns.1984.1.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central nervous system trauma : journal of the American Paralysis Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/cns.1984.1.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

为了研究神经元-胶质细胞的相互作用,我们的实验室开发了一个体外模型系统,当与细胞类型特异性抗血清一起使用时,可以可视化小脑颗粒神经元和星形胶质细胞之间的接触。当细胞从出生后早期小鼠小脑分离并置于微培养中时,神经元沿含有胶质丝蛋白(GFP)的星形胶质突起排列。神经元的行为取决于它们所接触的星形胶质细胞的形状。神经元迁移通常发生在伯格曼样胶质细胞的高度延长的星形胶质突起上,但当神经元依偎在星形胶质细胞的臂间时,神经元迁移受到抑制。为了分析神经元对星形胶质细胞形态的影响,我们对小脑颗粒神经元和星形胶质细胞进行纯化和重组。在缺乏神经元的情况下,小脑星形胶质细胞呈扁平状并迅速增殖。在星形胶质细胞缺失的情况下,神经突生长严重受损。当神经元与纯化的星形胶质细胞重组时,星形胶质细胞的增殖明显减慢,星形胶质细胞的形状转变为复杂的形式,并观察到神经元与胶质细胞的相互作用。在组织切片上,在发育中的小脑轴突束中发现未成熟的胶质细胞,但未发现生长的轴突尖端与胶质细胞之间的明显关系。在P7,小脑轴突生长明显减缓的时期,在假定的白质中可见短暂的自然胶质细胞增生。这些研究强调了神经元和星形胶质细胞在神经元分化和神经突生长期间的相互依赖性。此外,他们提出了一种可能性,即在中枢神经系统损伤期间,正常的神经元-星形胶质接触受到破坏,可能导致星形胶质形态和表面特性的缺陷,进而可能损害轴突的再生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neuron-astroglial interactions in vitro and their implications for repair of CNS injury.

To study neuron-glial interactions, our laboratory has developed an in vitro model system that, when used with cell type-specific antisera, allows visualization of contacts between cerebellar granule neurons and astroglia. When cells were dissociated from early postnatal mouse cerebellum and plated in microcultures, the neurons aligned along glial filament protein (GFP)-containing astroglial processes. The behavior of the neurons depended on the shape of the particular astroglial cell that they contacted. Neuronal migration commonly occurred along highly elongated astroglial processes of Bergmann-like glia but was inhibited when neurons nestled among the arms of stellate astroglia. To analyze the influence of neurons on the astroglial shapes associated with neuronal migration, cerebellar granule neurons and astroglia were purified and recombined. In the absence of neurons, cerebellar astroglia assumed a flattened shape and proliferated rapidly. In the absence of astroglia, neurite outgrowth was severely impaired. When neurons were recombined with purified astroglia, astroglial proliferation slowed markedly, the shape of the astroglia transformed into complex forms, and neuron-glial interactions were seen. In tissue sections, immature forms of glia were found in the developing cerebellar axon tracts, but no obvious relationship could be discerned between the growing axonal tips and the glia. At P7, a period when the growth of cerebellar axons slows markedly, a transient natural gliosis was seen in the putative white matter. These studies underscore the interdependence of neurons and astroglia during periods of neuron differentiation and neurite outgrowth. In addition, they raise the possibility that the disruption of normal neuronal-astroglial contacts suffered during CNS injury could lead to defects in astroglial form and surface properties that, in turn, might impair axon regrowth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Treatment of experimental spinal trauma with thyrotropin-releasing hormone: central serotonergic and vascular mechanisms of action. Opiate-receptor antagonists, thyrotropin-releasing hormone (TRH), and TRH analogs in the treatment of spinal cord injury. The post-injury responses in trauma and ischemia: secondary injury or protective mechanisms? Total phosphate determination in brain tissues: a method for regional determination of total phosphate in rat brain. Evaluation and diagnosis of cervical spine injuries: a review of the literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1