{"title":"真菌葡糖淀粉酶。","authors":"P Manjunath, B C Shenoy, M R Raghavendra Rao","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Glucoamylase (alpha-1,4-glucan glucohydrolase, EC 3.2.1.3) from fungal sources is one of the microbial glycoproteins that has received considerable attention particularly because it is used in the commercial production of dextrose. Several investigators have isolated glucoamylase from various fungal sources. In many instances the presence of more than one form of enzyme is common. The enzymes from most sources have pH optima between 4 and 5 and exhibit maximum activity between 40 and 60 degrees C. The enzyme does not require any cofactors for activity or for stability. The enzyme has an Mr between 48,000 and 80,000 and usually has no subunit structure. The amino acid composition of multiple forms of glucoamylases differ in general, but all of them are glycoproteins. The carbohydrate content of the enzyme ranges from 3 to 30% containing mainly mannose, but glucose, galactose, and in some instances glucosamine and xylose are also present. In the enzyme from Aspergillus the carbohydrate structures are present as mono-, di-, tri-, and tetrasaccharide units linked O-glycosidically through mannose to the hydroxyl groups of serine and threonine. In the enzyme from Rhizopus part of the carbohydrate is present as disaccharide (Man-Man-) units linked O-glycosidically and the remainder is present as large heterosaccharide structures attached by N-glycosidic linkages involving aspargine and glucosamine. Carbohydrate moieties seem to have no influence on the enzyme activity or antigenicity but appear to stabilize the enzyme by preserving the three-dimensional structure.</p>","PeriodicalId":14978,"journal":{"name":"Journal of applied biochemistry","volume":"5 4-5","pages":"235-60"},"PeriodicalIF":0.0000,"publicationDate":"1983-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fungal glucoamylases.\",\"authors\":\"P Manjunath, B C Shenoy, M R Raghavendra Rao\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glucoamylase (alpha-1,4-glucan glucohydrolase, EC 3.2.1.3) from fungal sources is one of the microbial glycoproteins that has received considerable attention particularly because it is used in the commercial production of dextrose. Several investigators have isolated glucoamylase from various fungal sources. In many instances the presence of more than one form of enzyme is common. The enzymes from most sources have pH optima between 4 and 5 and exhibit maximum activity between 40 and 60 degrees C. The enzyme does not require any cofactors for activity or for stability. The enzyme has an Mr between 48,000 and 80,000 and usually has no subunit structure. The amino acid composition of multiple forms of glucoamylases differ in general, but all of them are glycoproteins. The carbohydrate content of the enzyme ranges from 3 to 30% containing mainly mannose, but glucose, galactose, and in some instances glucosamine and xylose are also present. In the enzyme from Aspergillus the carbohydrate structures are present as mono-, di-, tri-, and tetrasaccharide units linked O-glycosidically through mannose to the hydroxyl groups of serine and threonine. In the enzyme from Rhizopus part of the carbohydrate is present as disaccharide (Man-Man-) units linked O-glycosidically and the remainder is present as large heterosaccharide structures attached by N-glycosidic linkages involving aspargine and glucosamine. Carbohydrate moieties seem to have no influence on the enzyme activity or antigenicity but appear to stabilize the enzyme by preserving the three-dimensional structure.</p>\",\"PeriodicalId\":14978,\"journal\":{\"name\":\"Journal of applied biochemistry\",\"volume\":\"5 4-5\",\"pages\":\"235-60\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1983-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied biochemistry","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Glucoamylase (alpha-1,4-glucan glucohydrolase, EC 3.2.1.3) from fungal sources is one of the microbial glycoproteins that has received considerable attention particularly because it is used in the commercial production of dextrose. Several investigators have isolated glucoamylase from various fungal sources. In many instances the presence of more than one form of enzyme is common. The enzymes from most sources have pH optima between 4 and 5 and exhibit maximum activity between 40 and 60 degrees C. The enzyme does not require any cofactors for activity or for stability. The enzyme has an Mr between 48,000 and 80,000 and usually has no subunit structure. The amino acid composition of multiple forms of glucoamylases differ in general, but all of them are glycoproteins. The carbohydrate content of the enzyme ranges from 3 to 30% containing mainly mannose, but glucose, galactose, and in some instances glucosamine and xylose are also present. In the enzyme from Aspergillus the carbohydrate structures are present as mono-, di-, tri-, and tetrasaccharide units linked O-glycosidically through mannose to the hydroxyl groups of serine and threonine. In the enzyme from Rhizopus part of the carbohydrate is present as disaccharide (Man-Man-) units linked O-glycosidically and the remainder is present as large heterosaccharide structures attached by N-glycosidic linkages involving aspargine and glucosamine. Carbohydrate moieties seem to have no influence on the enzyme activity or antigenicity but appear to stabilize the enzyme by preserving the three-dimensional structure.