一种高效的强化学习方法在生物柴油生产中的应用

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2023-06-01 DOI:10.1016/j.compchemeng.2023.108258
Shiam Kannan , Urmila Diwekar
{"title":"一种高效的强化学习方法在生物柴油生产中的应用","authors":"Shiam Kannan ,&nbsp;Urmila Diwekar","doi":"10.1016/j.compchemeng.2023.108258","DOIUrl":null,"url":null,"abstract":"<div><p>Optimal control problems are one of the most challenging problems in optimization. This paper presents a new and efficient Reinforcement Learning approach to optimal control problems based on the Batch Q-learning algorithm. To improve the convergence of the RL algorithm, we use k-dimensional uniformity of advanced sampling procedures, namely employing Hamersley sequences (HSS). HSS is used to randomly sample the state variables and discrete controls from the action space for the RL optimal control problem. The Neural-fitted Q-iterative algorithm is applied to solve an optimal control problem for a first-order state dynamical system. A real-world application of optimal temperature profile determination for biodiesel production in a batch reactor is presented. We present the comparison of our HSS-RL algorithm with that of the maximum principle.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"174 ","pages":"Article 108258"},"PeriodicalIF":3.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Reinforcement Learning Approach to Optimal Control with Application to Biodiesel Production\",\"authors\":\"Shiam Kannan ,&nbsp;Urmila Diwekar\",\"doi\":\"10.1016/j.compchemeng.2023.108258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Optimal control problems are one of the most challenging problems in optimization. This paper presents a new and efficient Reinforcement Learning approach to optimal control problems based on the Batch Q-learning algorithm. To improve the convergence of the RL algorithm, we use k-dimensional uniformity of advanced sampling procedures, namely employing Hamersley sequences (HSS). HSS is used to randomly sample the state variables and discrete controls from the action space for the RL optimal control problem. The Neural-fitted Q-iterative algorithm is applied to solve an optimal control problem for a first-order state dynamical system. A real-world application of optimal temperature profile determination for biodiesel production in a batch reactor is presented. We present the comparison of our HSS-RL algorithm with that of the maximum principle.</p></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"174 \",\"pages\":\"Article 108258\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009813542300128X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009813542300128X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

最优控制问题是最优化中最具挑战性的问题之一。本文提出了一种新的、高效的基于批q学习算法的最优控制问题强化学习方法。为了提高RL算法的收敛性,我们使用了高级采样过程的k维均匀性,即采用哈默斯利序列(HSS)。针对RL最优控制问题,采用HSS从动作空间中随机抽取状态变量和离散控制。应用神经拟合q -迭代算法求解一类一阶状态动力系统的最优控制问题。在间歇式反应器中确定生物柴油生产的最佳温度分布的实际应用。我们将我们的HSS-RL算法与最大值原理的算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient Reinforcement Learning Approach to Optimal Control with Application to Biodiesel Production

Optimal control problems are one of the most challenging problems in optimization. This paper presents a new and efficient Reinforcement Learning approach to optimal control problems based on the Batch Q-learning algorithm. To improve the convergence of the RL algorithm, we use k-dimensional uniformity of advanced sampling procedures, namely employing Hamersley sequences (HSS). HSS is used to randomly sample the state variables and discrete controls from the action space for the RL optimal control problem. The Neural-fitted Q-iterative algorithm is applied to solve an optimal control problem for a first-order state dynamical system. A real-world application of optimal temperature profile determination for biodiesel production in a batch reactor is presented. We present the comparison of our HSS-RL algorithm with that of the maximum principle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
The bullwhip effect, market competition and standard deviation ratio in two parallel supply chains CADET-Julia: Efficient and versatile, open-source simulator for batch chromatography in Julia Computer aided formulation design based on molecular dynamics simulation: Detergents with fragrance Model-based real-time optimization in continuous pharmaceutical manufacturing Risk-averse supply chain management via robust reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1