人类环杓后肌和声带的呼吸活动。

T P Brancatisano, D S Dodd, L A Engel
{"title":"人类环杓后肌和声带的呼吸活动。","authors":"T P Brancatisano,&nbsp;D S Dodd,&nbsp;L A Engel","doi":"10.1152/jappl.1984.57.4.1143","DOIUrl":null,"url":null,"abstract":"<p><p>We examined the respiratory activity of the posterior cricoarytenoid muscle (PCA) simultaneously with the movements of the vocal cords during tidal breathing and panting in four normal seated subjects. A bipolar electrode was constructed to record the surface electromyogram (EMG) of the PCA. The glottis was visualized with a fiberoptic bronchoscope, and the glottic image was recorded simultaneously with tidal volume and a digital time marker on video tape. During quiet breathing the integrated EMG signal (EPCA) showed consistent phasic variations in each subject. The inspiratory onset of EPCA in the four subjects preceded inspiratory flow by 170 +/- 80, 650 +/- 310, 130 +/- 80, and 130 +/- 90 ms (mean +/- SD), respectively. This lead time of the PCA was similar to that between the onset of glottic widening and inspiration in each subject. The proportion of each cycle during which EPCA increased (the duty cycle) was 31 +/- 3% (mean +/- SE), whereas the inspiratory portion of the respiratory cycle constituted 37 +/- 2% (mean +/- SE), respectively. The duty cycle of the PCA remained relatively constant in the same subject on different days. During panting at functional residual capacity, the EPCA increased to 142 +/- 11% of the peak activity recorded during the preceding control breaths. This was accompanied by a sustained increase in the glottic width to 91 +/- 9% of the peak value in the preceding breaths. These results confirm the role of the PCA as a principal abductor of the vocal cords and indicate a temporal relationship between PCA activation and the inspiratory phase of the respiratory cycle during tidal breathing in humans.</p>","PeriodicalId":15258,"journal":{"name":"Journal of applied physiology: respiratory, environmental and exercise physiology","volume":"57 4","pages":"1143-9"},"PeriodicalIF":0.0000,"publicationDate":"1984-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/jappl.1984.57.4.1143","citationCount":"62","resultStr":"{\"title\":\"Respiratory activity of posterior cricoarytenoid muscle and vocal cords in humans.\",\"authors\":\"T P Brancatisano,&nbsp;D S Dodd,&nbsp;L A Engel\",\"doi\":\"10.1152/jappl.1984.57.4.1143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We examined the respiratory activity of the posterior cricoarytenoid muscle (PCA) simultaneously with the movements of the vocal cords during tidal breathing and panting in four normal seated subjects. A bipolar electrode was constructed to record the surface electromyogram (EMG) of the PCA. The glottis was visualized with a fiberoptic bronchoscope, and the glottic image was recorded simultaneously with tidal volume and a digital time marker on video tape. During quiet breathing the integrated EMG signal (EPCA) showed consistent phasic variations in each subject. The inspiratory onset of EPCA in the four subjects preceded inspiratory flow by 170 +/- 80, 650 +/- 310, 130 +/- 80, and 130 +/- 90 ms (mean +/- SD), respectively. This lead time of the PCA was similar to that between the onset of glottic widening and inspiration in each subject. The proportion of each cycle during which EPCA increased (the duty cycle) was 31 +/- 3% (mean +/- SE), whereas the inspiratory portion of the respiratory cycle constituted 37 +/- 2% (mean +/- SE), respectively. The duty cycle of the PCA remained relatively constant in the same subject on different days. During panting at functional residual capacity, the EPCA increased to 142 +/- 11% of the peak activity recorded during the preceding control breaths. This was accompanied by a sustained increase in the glottic width to 91 +/- 9% of the peak value in the preceding breaths. These results confirm the role of the PCA as a principal abductor of the vocal cords and indicate a temporal relationship between PCA activation and the inspiratory phase of the respiratory cycle during tidal breathing in humans.</p>\",\"PeriodicalId\":15258,\"journal\":{\"name\":\"Journal of applied physiology: respiratory, environmental and exercise physiology\",\"volume\":\"57 4\",\"pages\":\"1143-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1984-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1152/jappl.1984.57.4.1143\",\"citationCount\":\"62\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied physiology: respiratory, environmental and exercise physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1152/jappl.1984.57.4.1143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology: respiratory, environmental and exercise physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/jappl.1984.57.4.1143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

摘要

我们检测了四名正常坐着的受试者在潮汐呼吸和喘气时,环状环腱后肌(PCA)的呼吸活动与声带的运动同时进行。构建双极电极记录PCA的表面肌电图(EMG)。在纤维支气管镜下观察声门,声门图像与潮气量和数字时间标记同时记录在录像带上。在安静呼吸时,综合肌电信号(EPCA)在每个受试者中显示一致的相位变化。4例受试者EPCA的吸气起始时间分别早于吸气流170 +/- 80ms、650 +/- 310ms、130 +/- 80ms和130 +/- 90ms(平均±SD)。PCA的前置时间与每个受试者声门扩宽和吸气之间的间隔时间相似。EPCA在每个周期中增加的比例(占空比)为31 +/- 3%(平均+/- SE),而呼吸周期的吸气部分分别占37 +/- 2%(平均+/- SE)。同一受试者在不同时间内PCA的占空比保持相对恒定。在以功能剩余容量喘气时,EPCA增加到之前控制呼吸时记录的峰值活动的142 +/- 11%。与此同时,声门宽度持续增加,达到前几次呼吸峰值的91 +/- 9%。这些结果证实了主外展肌作为声带的主要外展肌的作用,并表明主外展肌的激活与人类潮汐呼吸时呼吸周期的吸气期之间存在时间关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Respiratory activity of posterior cricoarytenoid muscle and vocal cords in humans.

We examined the respiratory activity of the posterior cricoarytenoid muscle (PCA) simultaneously with the movements of the vocal cords during tidal breathing and panting in four normal seated subjects. A bipolar electrode was constructed to record the surface electromyogram (EMG) of the PCA. The glottis was visualized with a fiberoptic bronchoscope, and the glottic image was recorded simultaneously with tidal volume and a digital time marker on video tape. During quiet breathing the integrated EMG signal (EPCA) showed consistent phasic variations in each subject. The inspiratory onset of EPCA in the four subjects preceded inspiratory flow by 170 +/- 80, 650 +/- 310, 130 +/- 80, and 130 +/- 90 ms (mean +/- SD), respectively. This lead time of the PCA was similar to that between the onset of glottic widening and inspiration in each subject. The proportion of each cycle during which EPCA increased (the duty cycle) was 31 +/- 3% (mean +/- SE), whereas the inspiratory portion of the respiratory cycle constituted 37 +/- 2% (mean +/- SE), respectively. The duty cycle of the PCA remained relatively constant in the same subject on different days. During panting at functional residual capacity, the EPCA increased to 142 +/- 11% of the peak activity recorded during the preceding control breaths. This was accompanied by a sustained increase in the glottic width to 91 +/- 9% of the peak value in the preceding breaths. These results confirm the role of the PCA as a principal abductor of the vocal cords and indicate a temporal relationship between PCA activation and the inspiratory phase of the respiratory cycle during tidal breathing in humans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exercise, Respiratory and Environmental Physiology: A Tribute from the School of Milano Positive end-expiratory pressure decreases bronchial blood flow in the dog. Effect of slightly lowered body temperatures on endurance performance in humans. Distribution and quantitative developmental changes in guinea pig pulmonary beta-receptors. Effect of beta-adrenergic blockade on lactate turnover in exercising dogs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1