{"title":"人类环杓后肌和声带的呼吸活动。","authors":"T P Brancatisano, D S Dodd, L A Engel","doi":"10.1152/jappl.1984.57.4.1143","DOIUrl":null,"url":null,"abstract":"<p><p>We examined the respiratory activity of the posterior cricoarytenoid muscle (PCA) simultaneously with the movements of the vocal cords during tidal breathing and panting in four normal seated subjects. A bipolar electrode was constructed to record the surface electromyogram (EMG) of the PCA. The glottis was visualized with a fiberoptic bronchoscope, and the glottic image was recorded simultaneously with tidal volume and a digital time marker on video tape. During quiet breathing the integrated EMG signal (EPCA) showed consistent phasic variations in each subject. The inspiratory onset of EPCA in the four subjects preceded inspiratory flow by 170 +/- 80, 650 +/- 310, 130 +/- 80, and 130 +/- 90 ms (mean +/- SD), respectively. This lead time of the PCA was similar to that between the onset of glottic widening and inspiration in each subject. The proportion of each cycle during which EPCA increased (the duty cycle) was 31 +/- 3% (mean +/- SE), whereas the inspiratory portion of the respiratory cycle constituted 37 +/- 2% (mean +/- SE), respectively. The duty cycle of the PCA remained relatively constant in the same subject on different days. During panting at functional residual capacity, the EPCA increased to 142 +/- 11% of the peak activity recorded during the preceding control breaths. This was accompanied by a sustained increase in the glottic width to 91 +/- 9% of the peak value in the preceding breaths. These results confirm the role of the PCA as a principal abductor of the vocal cords and indicate a temporal relationship between PCA activation and the inspiratory phase of the respiratory cycle during tidal breathing in humans.</p>","PeriodicalId":15258,"journal":{"name":"Journal of applied physiology: respiratory, environmental and exercise physiology","volume":"57 4","pages":"1143-9"},"PeriodicalIF":0.0000,"publicationDate":"1984-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/jappl.1984.57.4.1143","citationCount":"62","resultStr":"{\"title\":\"Respiratory activity of posterior cricoarytenoid muscle and vocal cords in humans.\",\"authors\":\"T P Brancatisano, D S Dodd, L A Engel\",\"doi\":\"10.1152/jappl.1984.57.4.1143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We examined the respiratory activity of the posterior cricoarytenoid muscle (PCA) simultaneously with the movements of the vocal cords during tidal breathing and panting in four normal seated subjects. A bipolar electrode was constructed to record the surface electromyogram (EMG) of the PCA. The glottis was visualized with a fiberoptic bronchoscope, and the glottic image was recorded simultaneously with tidal volume and a digital time marker on video tape. During quiet breathing the integrated EMG signal (EPCA) showed consistent phasic variations in each subject. The inspiratory onset of EPCA in the four subjects preceded inspiratory flow by 170 +/- 80, 650 +/- 310, 130 +/- 80, and 130 +/- 90 ms (mean +/- SD), respectively. This lead time of the PCA was similar to that between the onset of glottic widening and inspiration in each subject. The proportion of each cycle during which EPCA increased (the duty cycle) was 31 +/- 3% (mean +/- SE), whereas the inspiratory portion of the respiratory cycle constituted 37 +/- 2% (mean +/- SE), respectively. The duty cycle of the PCA remained relatively constant in the same subject on different days. During panting at functional residual capacity, the EPCA increased to 142 +/- 11% of the peak activity recorded during the preceding control breaths. This was accompanied by a sustained increase in the glottic width to 91 +/- 9% of the peak value in the preceding breaths. These results confirm the role of the PCA as a principal abductor of the vocal cords and indicate a temporal relationship between PCA activation and the inspiratory phase of the respiratory cycle during tidal breathing in humans.</p>\",\"PeriodicalId\":15258,\"journal\":{\"name\":\"Journal of applied physiology: respiratory, environmental and exercise physiology\",\"volume\":\"57 4\",\"pages\":\"1143-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1984-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1152/jappl.1984.57.4.1143\",\"citationCount\":\"62\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied physiology: respiratory, environmental and exercise physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1152/jappl.1984.57.4.1143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology: respiratory, environmental and exercise physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/jappl.1984.57.4.1143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Respiratory activity of posterior cricoarytenoid muscle and vocal cords in humans.
We examined the respiratory activity of the posterior cricoarytenoid muscle (PCA) simultaneously with the movements of the vocal cords during tidal breathing and panting in four normal seated subjects. A bipolar electrode was constructed to record the surface electromyogram (EMG) of the PCA. The glottis was visualized with a fiberoptic bronchoscope, and the glottic image was recorded simultaneously with tidal volume and a digital time marker on video tape. During quiet breathing the integrated EMG signal (EPCA) showed consistent phasic variations in each subject. The inspiratory onset of EPCA in the four subjects preceded inspiratory flow by 170 +/- 80, 650 +/- 310, 130 +/- 80, and 130 +/- 90 ms (mean +/- SD), respectively. This lead time of the PCA was similar to that between the onset of glottic widening and inspiration in each subject. The proportion of each cycle during which EPCA increased (the duty cycle) was 31 +/- 3% (mean +/- SE), whereas the inspiratory portion of the respiratory cycle constituted 37 +/- 2% (mean +/- SE), respectively. The duty cycle of the PCA remained relatively constant in the same subject on different days. During panting at functional residual capacity, the EPCA increased to 142 +/- 11% of the peak activity recorded during the preceding control breaths. This was accompanied by a sustained increase in the glottic width to 91 +/- 9% of the peak value in the preceding breaths. These results confirm the role of the PCA as a principal abductor of the vocal cords and indicate a temporal relationship between PCA activation and the inspiratory phase of the respiratory cycle during tidal breathing in humans.