{"title":"在不同强度的恢复性运动中血乳酸消失。","authors":"S Dodd, S K Powers, T Callender, E Brooks","doi":"10.1152/jappl.1984.57.5.1462","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous studies have reported that following intense exercise the rate of blood lactate (La) disappearance is greater during continuous aerobic work than during passive recovery. Recent work indicates that a combination of high- and low-intensity work may be optimal in reducing blood La. We tested this hypothesis by measuring the changes in blood La levels following maximal exercise during four different recovery patterns. Immediately following 50 S of maximal work, subjects (n = 7) performed one of the following recovery treatments for 40 min: 1) passive recovery (PR); 2) cycling at 35% maximal O2 uptake (VO2 max) (35% R); 3) cycling at 65% VO2 max (65% R); 4) cycling at 65% for 7 min followed by cycling at 35% for 33 min (CR). The treatment order was counterbalanced with each subject performing all treatments. Serial blood samples were obtained throughout recovery treatments and analyzed for La. The rate of blood La disappearance was significantly greater (P less than 0.05) in both the 35% R and CR when compared with either the 65% R or PR. No significant difference (P greater than 0.05) existed in the rate of blood La disappearance between the 35% R and CR. These data do not support the hypothesis that exercise recovery at a combination of intensities is superior to a recovery involving continuous submaximal exercise in lowering blood La following maximal work.</p>","PeriodicalId":15258,"journal":{"name":"Journal of applied physiology: respiratory, environmental and exercise physiology","volume":"57 5","pages":"1462-5"},"PeriodicalIF":0.0000,"publicationDate":"1984-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/jappl.1984.57.5.1462","citationCount":"144","resultStr":"{\"title\":\"Blood lactate disappearance at various intensities of recovery exercise.\",\"authors\":\"S Dodd, S K Powers, T Callender, E Brooks\",\"doi\":\"10.1152/jappl.1984.57.5.1462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Numerous studies have reported that following intense exercise the rate of blood lactate (La) disappearance is greater during continuous aerobic work than during passive recovery. Recent work indicates that a combination of high- and low-intensity work may be optimal in reducing blood La. We tested this hypothesis by measuring the changes in blood La levels following maximal exercise during four different recovery patterns. Immediately following 50 S of maximal work, subjects (n = 7) performed one of the following recovery treatments for 40 min: 1) passive recovery (PR); 2) cycling at 35% maximal O2 uptake (VO2 max) (35% R); 3) cycling at 65% VO2 max (65% R); 4) cycling at 65% for 7 min followed by cycling at 35% for 33 min (CR). The treatment order was counterbalanced with each subject performing all treatments. Serial blood samples were obtained throughout recovery treatments and analyzed for La. The rate of blood La disappearance was significantly greater (P less than 0.05) in both the 35% R and CR when compared with either the 65% R or PR. No significant difference (P greater than 0.05) existed in the rate of blood La disappearance between the 35% R and CR. These data do not support the hypothesis that exercise recovery at a combination of intensities is superior to a recovery involving continuous submaximal exercise in lowering blood La following maximal work.</p>\",\"PeriodicalId\":15258,\"journal\":{\"name\":\"Journal of applied physiology: respiratory, environmental and exercise physiology\",\"volume\":\"57 5\",\"pages\":\"1462-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1984-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1152/jappl.1984.57.5.1462\",\"citationCount\":\"144\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied physiology: respiratory, environmental and exercise physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1152/jappl.1984.57.5.1462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology: respiratory, environmental and exercise physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/jappl.1984.57.5.1462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Blood lactate disappearance at various intensities of recovery exercise.
Numerous studies have reported that following intense exercise the rate of blood lactate (La) disappearance is greater during continuous aerobic work than during passive recovery. Recent work indicates that a combination of high- and low-intensity work may be optimal in reducing blood La. We tested this hypothesis by measuring the changes in blood La levels following maximal exercise during four different recovery patterns. Immediately following 50 S of maximal work, subjects (n = 7) performed one of the following recovery treatments for 40 min: 1) passive recovery (PR); 2) cycling at 35% maximal O2 uptake (VO2 max) (35% R); 3) cycling at 65% VO2 max (65% R); 4) cycling at 65% for 7 min followed by cycling at 35% for 33 min (CR). The treatment order was counterbalanced with each subject performing all treatments. Serial blood samples were obtained throughout recovery treatments and analyzed for La. The rate of blood La disappearance was significantly greater (P less than 0.05) in both the 35% R and CR when compared with either the 65% R or PR. No significant difference (P greater than 0.05) existed in the rate of blood La disappearance between the 35% R and CR. These data do not support the hypothesis that exercise recovery at a combination of intensities is superior to a recovery involving continuous submaximal exercise in lowering blood La following maximal work.