{"title":"卧床休息后持续负荷运动的VO2动力学。","authors":"V A Convertino, D J Goldwater, H Sandler","doi":"10.1152/jappl.1984.57.5.1545","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to determine the effects of bed-rest-induced deconditioning on changes in O2 uptake (VO2) kinetics, O2 deficit, steady-state VO2, and recovery VO2 during the performance of constant-load exercise. Five male subjects (36-40 yr) underwent 7 days of continuous bed rest (BR) in the head-down (-6 degrees) position. Two days before (pre) and the day after (post) BR each subject performed one submaximal exercise test in the supine and one in the upright position consisting of 5 min of rest, 5 min of cycle ergometer exercise at 700 kg.m/min, and 10 min of recovery from exercise. VO2 was measured continuously in all tests from 2-liter aliquot gas samples collected every 30 s. Following BR steady-state VO2 was unchanged in supine and upright exercise. In the supine position BR did not change total exercise VO2, O2 deficit, or total recovery VO2. However, compared with pre-BR, total exercise VO2 decreased (P less than 0.05) from 7.41 +/- 0.11 to 7.23 +/- 0.17 liters, O2 deficit increased (P less than 0.05) from 1.15 +/- 0.05 to 1.41 +/- 0.07 liters, and total recovery VO2 increased (P less than 0.05) from 5.17 +/- 0.11 to 5.47 +/- 0.17 liters during the post-BR upright test. Despite the ability to attain similar steady-state VO2 within 5 min, bed-rest-induced deconditioning resulted in a reduction of total VO2 capacity and an increase in the O2 deficit during submaximal constant-load exercise. This change in VO2 kinetics is found only with exercise in the upright rather than supine position implicating orthostatic mechanisms in the delayed response to submaximal exercise.</p>","PeriodicalId":15258,"journal":{"name":"Journal of applied physiology: respiratory, environmental and exercise physiology","volume":"57 5","pages":"1545-50"},"PeriodicalIF":0.0000,"publicationDate":"1984-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/jappl.1984.57.5.1545","citationCount":"58","resultStr":"{\"title\":\"VO2 kinetics of constant-load exercise following bed-rest-induced deconditioning.\",\"authors\":\"V A Convertino, D J Goldwater, H Sandler\",\"doi\":\"10.1152/jappl.1984.57.5.1545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this study was to determine the effects of bed-rest-induced deconditioning on changes in O2 uptake (VO2) kinetics, O2 deficit, steady-state VO2, and recovery VO2 during the performance of constant-load exercise. Five male subjects (36-40 yr) underwent 7 days of continuous bed rest (BR) in the head-down (-6 degrees) position. Two days before (pre) and the day after (post) BR each subject performed one submaximal exercise test in the supine and one in the upright position consisting of 5 min of rest, 5 min of cycle ergometer exercise at 700 kg.m/min, and 10 min of recovery from exercise. VO2 was measured continuously in all tests from 2-liter aliquot gas samples collected every 30 s. Following BR steady-state VO2 was unchanged in supine and upright exercise. In the supine position BR did not change total exercise VO2, O2 deficit, or total recovery VO2. However, compared with pre-BR, total exercise VO2 decreased (P less than 0.05) from 7.41 +/- 0.11 to 7.23 +/- 0.17 liters, O2 deficit increased (P less than 0.05) from 1.15 +/- 0.05 to 1.41 +/- 0.07 liters, and total recovery VO2 increased (P less than 0.05) from 5.17 +/- 0.11 to 5.47 +/- 0.17 liters during the post-BR upright test. Despite the ability to attain similar steady-state VO2 within 5 min, bed-rest-induced deconditioning resulted in a reduction of total VO2 capacity and an increase in the O2 deficit during submaximal constant-load exercise. This change in VO2 kinetics is found only with exercise in the upright rather than supine position implicating orthostatic mechanisms in the delayed response to submaximal exercise.</p>\",\"PeriodicalId\":15258,\"journal\":{\"name\":\"Journal of applied physiology: respiratory, environmental and exercise physiology\",\"volume\":\"57 5\",\"pages\":\"1545-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1984-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1152/jappl.1984.57.5.1545\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied physiology: respiratory, environmental and exercise physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1152/jappl.1984.57.5.1545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology: respiratory, environmental and exercise physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/jappl.1984.57.5.1545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
VO2 kinetics of constant-load exercise following bed-rest-induced deconditioning.
The purpose of this study was to determine the effects of bed-rest-induced deconditioning on changes in O2 uptake (VO2) kinetics, O2 deficit, steady-state VO2, and recovery VO2 during the performance of constant-load exercise. Five male subjects (36-40 yr) underwent 7 days of continuous bed rest (BR) in the head-down (-6 degrees) position. Two days before (pre) and the day after (post) BR each subject performed one submaximal exercise test in the supine and one in the upright position consisting of 5 min of rest, 5 min of cycle ergometer exercise at 700 kg.m/min, and 10 min of recovery from exercise. VO2 was measured continuously in all tests from 2-liter aliquot gas samples collected every 30 s. Following BR steady-state VO2 was unchanged in supine and upright exercise. In the supine position BR did not change total exercise VO2, O2 deficit, or total recovery VO2. However, compared with pre-BR, total exercise VO2 decreased (P less than 0.05) from 7.41 +/- 0.11 to 7.23 +/- 0.17 liters, O2 deficit increased (P less than 0.05) from 1.15 +/- 0.05 to 1.41 +/- 0.07 liters, and total recovery VO2 increased (P less than 0.05) from 5.17 +/- 0.11 to 5.47 +/- 0.17 liters during the post-BR upright test. Despite the ability to attain similar steady-state VO2 within 5 min, bed-rest-induced deconditioning resulted in a reduction of total VO2 capacity and an increase in the O2 deficit during submaximal constant-load exercise. This change in VO2 kinetics is found only with exercise in the upright rather than supine position implicating orthostatic mechanisms in the delayed response to submaximal exercise.