生物数据的线性非参数和参数识别的计算机程序

Susan A.S Werness, David J Anderson
{"title":"生物数据的线性非参数和参数识别的计算机程序","authors":"Susan A.S Werness,&nbsp;David J Anderson","doi":"10.1016/0010-468X(84)90025-4","DOIUrl":null,"url":null,"abstract":"<div><p>A computer program package for parametric and nonparametric linear system identification of both static and dynamic biological data, written for an LSI-11 minicomputer with 28 K of memory, is described. The program has 11 possible commands including an instructional help command. A user can perform nonparametric spectral analysis and estimation of autocorrelation and partial autocorrelation functions of univariate data and estimate nonparametrically the transfer function and possibly an associated noise series of bivariate data. In addition, the commands provide the user the means to derive a parametric autoregressive moving average model for univariate data, to derive a parametric transfer function and noise model for bivariate data, and to perform several model evaluation tests such as pole-zero cancellation, examination of residual whiteness and uncorrelatedness with the input. The program, consisting of a main program and driver subroutine as well as six overlay segments, may be run interactively or automatically.</p></div>","PeriodicalId":75731,"journal":{"name":"Computer programs in biomedicine","volume":"18 1","pages":"Pages 77-93"},"PeriodicalIF":0.0000,"publicationDate":"1984-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0010-468X(84)90025-4","citationCount":"5","resultStr":"{\"title\":\"A computer program for linear nonparametric and parametric identification of biological data\",\"authors\":\"Susan A.S Werness,&nbsp;David J Anderson\",\"doi\":\"10.1016/0010-468X(84)90025-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A computer program package for parametric and nonparametric linear system identification of both static and dynamic biological data, written for an LSI-11 minicomputer with 28 K of memory, is described. The program has 11 possible commands including an instructional help command. A user can perform nonparametric spectral analysis and estimation of autocorrelation and partial autocorrelation functions of univariate data and estimate nonparametrically the transfer function and possibly an associated noise series of bivariate data. In addition, the commands provide the user the means to derive a parametric autoregressive moving average model for univariate data, to derive a parametric transfer function and noise model for bivariate data, and to perform several model evaluation tests such as pole-zero cancellation, examination of residual whiteness and uncorrelatedness with the input. The program, consisting of a main program and driver subroutine as well as six overlay segments, may be run interactively or automatically.</p></div>\",\"PeriodicalId\":75731,\"journal\":{\"name\":\"Computer programs in biomedicine\",\"volume\":\"18 1\",\"pages\":\"Pages 77-93\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1984-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0010-468X(84)90025-4\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer programs in biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0010468X84900254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer programs in biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0010468X84900254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文描述了一个用于静态和动态生物数据的参数和非参数线性系统识别的计算机程序包,该程序包是为具有28k内存的LSI-11小型计算机编写的。该程序有11个可能的命令,包括一个指导帮助命令。用户可以对单变量数据的自相关和部分自相关函数进行非参数谱分析和估计,并对二元数据的传递函数和可能的相关噪声序列进行非参数估计。此外,这些命令还为用户提供了为单变量数据导出参数自回归移动平均模型的方法,为双变量数据导出参数传递函数和噪声模型,并执行若干模型评估测试,如极点零抵消、检查剩余白度和与输入的不相关。该程序由一个主程序和驱动子程序以及六个覆盖段组成,可以交互式或自动运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A computer program for linear nonparametric and parametric identification of biological data

A computer program package for parametric and nonparametric linear system identification of both static and dynamic biological data, written for an LSI-11 minicomputer with 28 K of memory, is described. The program has 11 possible commands including an instructional help command. A user can perform nonparametric spectral analysis and estimation of autocorrelation and partial autocorrelation functions of univariate data and estimate nonparametrically the transfer function and possibly an associated noise series of bivariate data. In addition, the commands provide the user the means to derive a parametric autoregressive moving average model for univariate data, to derive a parametric transfer function and noise model for bivariate data, and to perform several model evaluation tests such as pole-zero cancellation, examination of residual whiteness and uncorrelatedness with the input. The program, consisting of a main program and driver subroutine as well as six overlay segments, may be run interactively or automatically.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrigendum Transport of charged macromolecules across a biological charged membrane User friendliness in microcomputer programs Cycle-triggered averaging of respiration-related neuronal activity Timing pulse and sampling programs implemented on a laboratory microcomputer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1