猫从背柱核投射到间脑、前顶盖和顶盖的神经元的差异。

M S Bull, K J Berkley
{"title":"猫从背柱核投射到间脑、前顶盖和顶盖的神经元的差异。","authors":"M S Bull,&nbsp;K J Berkley","doi":"10.3109/07367228409144551","DOIUrl":null,"url":null,"abstract":"<p><p>The dorsal column nuclei (DCN) project to a number of targets in the nervous system besides the ventroposterolateral nucleus (VPL) of the thalamus. Recent evidence obtained using double-labeling techniques indicates that DCN's diencephalic-projecting neurons differ in their location and morphology from those that project to some of its other targets, such as the cerebellum and tectum. The purpose of the present study was to characterize anatomically the DCN neurons that project another of DCN's targets, the pretectum, and to determine if any of these neurons have collateral projections to the tectum or diencephalon. The projections were studied using two double-labeling methods. One method made use of either tritiated inactivated horseradish peroxidase ([3H]apoHRP) or tritiated N-acetyl wheatgerm agglutinin ([3H]WGA) as a marker and HRP or WGA conjugated to HRP. The other method made use of the dyes Fast Blue and Nuclear Yellow. In each cat, one marker was injected into the DCN-recipient portions of the pretectum, tectum, or diencephalon, and the other marker was injected into another of these three targets. Neurons labeled by pretectal or tectal injections were of all sizes, fusiform and multipolar in shape, and similarly located. They were scattered through the rostral zone of DCN, but were distributed at the periphery of and at the junction between the gracile and cuneate nuclei in DCN's middle and caudal zones. In contrast to the pretectal- and tectal-labeled neurons, neurons labeled by diencephalic injections were round and large. They were found throughout the DCN complex, but were concentrated in DCN's middle and caudal zones. When both the pretectum and diencephalon were injected in the same cat, the two groups of neurons occupied similar locations in the rostral zone, but were distinct in the middle and caudal zones, with the pretectal-projecting neurons surrounding the clusters of diencephalic-projecting neurons. Very few neurons were double-labeled. These results demonstrate that the projections to the pretectum, tectum, and diencephalon originate from different populations of neurons within specific domains in DCN. When these results are compared with the results of electrophysiological and other anatomical studies, it appears that the pretectal- and tectal-projecting neurons may be part of a previously unrecognized system originating in DCN.(ABSTRACT TRUNCATED AT 400 WORDS)</p>","PeriodicalId":77800,"journal":{"name":"Somatosensory research","volume":"1 3","pages":"281-300"},"PeriodicalIF":0.0000,"publicationDate":"1984-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/07367228409144551","citationCount":"54","resultStr":"{\"title\":\"Differences in the neurons that project from the dorsal column nuclei to the diencephalon, pretectum, and tectum in the cat.\",\"authors\":\"M S Bull,&nbsp;K J Berkley\",\"doi\":\"10.3109/07367228409144551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The dorsal column nuclei (DCN) project to a number of targets in the nervous system besides the ventroposterolateral nucleus (VPL) of the thalamus. Recent evidence obtained using double-labeling techniques indicates that DCN's diencephalic-projecting neurons differ in their location and morphology from those that project to some of its other targets, such as the cerebellum and tectum. The purpose of the present study was to characterize anatomically the DCN neurons that project another of DCN's targets, the pretectum, and to determine if any of these neurons have collateral projections to the tectum or diencephalon. The projections were studied using two double-labeling methods. One method made use of either tritiated inactivated horseradish peroxidase ([3H]apoHRP) or tritiated N-acetyl wheatgerm agglutinin ([3H]WGA) as a marker and HRP or WGA conjugated to HRP. The other method made use of the dyes Fast Blue and Nuclear Yellow. In each cat, one marker was injected into the DCN-recipient portions of the pretectum, tectum, or diencephalon, and the other marker was injected into another of these three targets. Neurons labeled by pretectal or tectal injections were of all sizes, fusiform and multipolar in shape, and similarly located. They were scattered through the rostral zone of DCN, but were distributed at the periphery of and at the junction between the gracile and cuneate nuclei in DCN's middle and caudal zones. In contrast to the pretectal- and tectal-labeled neurons, neurons labeled by diencephalic injections were round and large. They were found throughout the DCN complex, but were concentrated in DCN's middle and caudal zones. When both the pretectum and diencephalon were injected in the same cat, the two groups of neurons occupied similar locations in the rostral zone, but were distinct in the middle and caudal zones, with the pretectal-projecting neurons surrounding the clusters of diencephalic-projecting neurons. Very few neurons were double-labeled. These results demonstrate that the projections to the pretectum, tectum, and diencephalon originate from different populations of neurons within specific domains in DCN. When these results are compared with the results of electrophysiological and other anatomical studies, it appears that the pretectal- and tectal-projecting neurons may be part of a previously unrecognized system originating in DCN.(ABSTRACT TRUNCATED AT 400 WORDS)</p>\",\"PeriodicalId\":77800,\"journal\":{\"name\":\"Somatosensory research\",\"volume\":\"1 3\",\"pages\":\"281-300\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1984-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/07367228409144551\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Somatosensory research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/07367228409144551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Somatosensory research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/07367228409144551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

背柱核(DCN)投射到丘脑腹后外侧核(VPL)以外的神经系统中的许多目标。最近使用双标记技术获得的证据表明,DCN间脑投射神经元的位置和形态与投射到其他一些目标(如小脑和顶盖)的神经元不同。本研究的目的是解剖表征DCN神经元投射的另一个DCN的目标,前顶盖,并确定是否有任何这些神经元有侧向投射到顶盖或间脑。采用两种双标记方法对投影进行研究。一种方法是利用硝酸化失活的辣根过氧化物酶([3H]apoHRP)或硝酸化的n -乙酰小麦胚芽凝集素([3H]WGA)作为标记物和HRP或与HRP结合的WGA。另一种方法是使用染料坚蓝和核黄。在每只猫中,一种标记物被注射到前顶盖、顶盖或间脑的dcn受体部分,另一种标记物被注射到这三个靶点中的另一个。前额叶或顶叶注射标记的神经元大小不一,形状呈梭状和多极状,位置相似。它们分散分布在DCN的吻侧区,但分布在DCN中部和尾侧区细核和楔形核的外围和交界处。与顶叶前和顶叶标记的神经元相比,间脑注射标记的神经元大而圆。它们遍布DCN复合体,但集中在DCN的中部和尾侧区域。在同一只猫身上同时注射前顶叶和间脑,两组神经元在吻侧区占据相似的位置,但在中部和尾侧区截然不同,前顶叶突出的神经元围绕着间脑突出的神经元簇。很少有神经元被双重标记。这些结果表明,对前顶盖、顶盖和间脑的投射来自DCN特定区域内的不同神经元群。当这些结果与电生理学和其他解剖学研究的结果进行比较时,似乎前额叶和前额叶突出的神经元可能是以前未被识别的起源于DCN的系统的一部分。(摘要删节为400字)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differences in the neurons that project from the dorsal column nuclei to the diencephalon, pretectum, and tectum in the cat.

The dorsal column nuclei (DCN) project to a number of targets in the nervous system besides the ventroposterolateral nucleus (VPL) of the thalamus. Recent evidence obtained using double-labeling techniques indicates that DCN's diencephalic-projecting neurons differ in their location and morphology from those that project to some of its other targets, such as the cerebellum and tectum. The purpose of the present study was to characterize anatomically the DCN neurons that project another of DCN's targets, the pretectum, and to determine if any of these neurons have collateral projections to the tectum or diencephalon. The projections were studied using two double-labeling methods. One method made use of either tritiated inactivated horseradish peroxidase ([3H]apoHRP) or tritiated N-acetyl wheatgerm agglutinin ([3H]WGA) as a marker and HRP or WGA conjugated to HRP. The other method made use of the dyes Fast Blue and Nuclear Yellow. In each cat, one marker was injected into the DCN-recipient portions of the pretectum, tectum, or diencephalon, and the other marker was injected into another of these three targets. Neurons labeled by pretectal or tectal injections were of all sizes, fusiform and multipolar in shape, and similarly located. They were scattered through the rostral zone of DCN, but were distributed at the periphery of and at the junction between the gracile and cuneate nuclei in DCN's middle and caudal zones. In contrast to the pretectal- and tectal-labeled neurons, neurons labeled by diencephalic injections were round and large. They were found throughout the DCN complex, but were concentrated in DCN's middle and caudal zones. When both the pretectum and diencephalon were injected in the same cat, the two groups of neurons occupied similar locations in the rostral zone, but were distinct in the middle and caudal zones, with the pretectal-projecting neurons surrounding the clusters of diencephalic-projecting neurons. Very few neurons were double-labeled. These results demonstrate that the projections to the pretectum, tectum, and diencephalon originate from different populations of neurons within specific domains in DCN. When these results are compared with the results of electrophysiological and other anatomical studies, it appears that the pretectal- and tectal-projecting neurons may be part of a previously unrecognized system originating in DCN.(ABSTRACT TRUNCATED AT 400 WORDS)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GABA distribution in a pain-modulating zone of trigeminal subnucleus interpolaris. Acid phosphatase as a selective marker for a class of small sensory ganglion cells in several mammals: spinal cord distribution, histochemical properties, and relation to fluoride-resistant acid phosphatase (FRAP) of rodents. The intrinsic organization of the ventroposterolateral nucleus and related reticular thalamic nucleus of the rat: a double-labeling ultrastructural investigation with gamma-aminobutyric acid immunogold staining and lectin-conjugated horseradish peroxidase. Spinal and trigeminal projections to the parabrachial nucleus in the rat: electron-microscopic evidence of a spino-ponto-amygdalian somatosensory pathway. The fiber caliber of 5-HT immunoreactive axons in the dorsolateral funiculus of the spinal cord of the rat and cat.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1