来自大鼠肝癌细胞的RNA可激活小鼠红白血病细胞苯丙氨酸羟化酶基因。

T V Gopalakrishnan, J W Littlefield
{"title":"来自大鼠肝癌细胞的RNA可激活小鼠红白血病细胞苯丙氨酸羟化酶基因。","authors":"T V Gopalakrishnan,&nbsp;J W Littlefield","doi":"10.1007/BF01544053","DOIUrl":null,"url":null,"abstract":"<p><p>Mouse erythroleukemia (MEL) cells do not synthesize any detectable level of phenylalanine hydroxylase and thus do not grow in Tyr- medium. Rat hepatoma cells that constitutively express phenylalanine hydroxylase were treated prior to fusion with MEL cells with biochemical inhibitors to inactivate different macromolecular components of the cells, and the fusion products were selected in Tyr- medium. Continuously growing populations of cells resembling the parental MEL cells and expressing mouse phenylalanine hydroxylase were obtained only when rat hepatoma cells treated with mitomycin or iodoacetamide, which inactivate DNA and SH proteins, respectively, were fused with MEL cells. Fusion of MEL cells with UV-treated rat hepatoma cells did not result in the activation of the mouse phenylalanine hydroxylase gene. UV treatment damages both DNA and RNA. These data suggested that RNA was involved in the regulation of phenylalanine hydroxylase gene. Additional evidence for the role of RNA in the phenylalanine hydroxylase gene regulation was obtained from RNA transfection studies. RNA only from cells which express phenylalanine hydroxylase, such as rat hepatoma cells and MEL cybrids, when introduced into MEL cells by the CaPO4 coprecipitation method, resulted in the permanent activation of the mouse phenylalanine hydroxylase gene.</p>","PeriodicalId":21767,"journal":{"name":"Somatic Cell Genetics","volume":"9 1","pages":"121-31"},"PeriodicalIF":0.0000,"publicationDate":"1983-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF01544053","citationCount":"6","resultStr":"{\"title\":\"RNA from rat hepatoma cells can activate phenylalanine hydroxylase gene of mouse erythroleukemia cells.\",\"authors\":\"T V Gopalakrishnan,&nbsp;J W Littlefield\",\"doi\":\"10.1007/BF01544053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mouse erythroleukemia (MEL) cells do not synthesize any detectable level of phenylalanine hydroxylase and thus do not grow in Tyr- medium. Rat hepatoma cells that constitutively express phenylalanine hydroxylase were treated prior to fusion with MEL cells with biochemical inhibitors to inactivate different macromolecular components of the cells, and the fusion products were selected in Tyr- medium. Continuously growing populations of cells resembling the parental MEL cells and expressing mouse phenylalanine hydroxylase were obtained only when rat hepatoma cells treated with mitomycin or iodoacetamide, which inactivate DNA and SH proteins, respectively, were fused with MEL cells. Fusion of MEL cells with UV-treated rat hepatoma cells did not result in the activation of the mouse phenylalanine hydroxylase gene. UV treatment damages both DNA and RNA. These data suggested that RNA was involved in the regulation of phenylalanine hydroxylase gene. Additional evidence for the role of RNA in the phenylalanine hydroxylase gene regulation was obtained from RNA transfection studies. RNA only from cells which express phenylalanine hydroxylase, such as rat hepatoma cells and MEL cybrids, when introduced into MEL cells by the CaPO4 coprecipitation method, resulted in the permanent activation of the mouse phenylalanine hydroxylase gene.</p>\",\"PeriodicalId\":21767,\"journal\":{\"name\":\"Somatic Cell Genetics\",\"volume\":\"9 1\",\"pages\":\"121-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1983-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/BF01544053\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Somatic Cell Genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/BF01544053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Somatic Cell Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF01544053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

小鼠红细胞白血病(MEL)细胞不能合成任何可检测水平的苯丙氨酸羟化酶,因此不能在Tyr-培养基中生长。本研究将组成型表达苯丙氨酸羟化酶的大鼠肝癌细胞与MEL细胞融合前,用生化抑制剂灭活细胞的不同大分子成分,并在Tyr-培养基中选择融合产物。只有用丝裂霉素或碘乙酰胺分别灭活DNA和SH蛋白的大鼠肝癌细胞与MEL细胞融合,才能获得与亲代MEL细胞相似并表达小鼠苯丙氨酸羟化酶的持续生长的细胞群。MEL细胞与紫外线处理过的大鼠肝癌细胞融合不会导致小鼠苯丙氨酸羟化酶基因的激活。紫外线处理会损害DNA和RNA。这些数据提示RNA参与了苯丙氨酸羟化酶基因的调控。RNA在苯丙氨酸羟化酶基因调控中的作用的其他证据是从RNA转染研究中获得的。仅来自表达苯丙氨酸羟化酶的细胞的RNA,如大鼠肝癌细胞和MEL细胞,通过CaPO4共沉淀法导入MEL细胞,导致小鼠苯丙氨酸羟化酶基因永久激活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RNA from rat hepatoma cells can activate phenylalanine hydroxylase gene of mouse erythroleukemia cells.

Mouse erythroleukemia (MEL) cells do not synthesize any detectable level of phenylalanine hydroxylase and thus do not grow in Tyr- medium. Rat hepatoma cells that constitutively express phenylalanine hydroxylase were treated prior to fusion with MEL cells with biochemical inhibitors to inactivate different macromolecular components of the cells, and the fusion products were selected in Tyr- medium. Continuously growing populations of cells resembling the parental MEL cells and expressing mouse phenylalanine hydroxylase were obtained only when rat hepatoma cells treated with mitomycin or iodoacetamide, which inactivate DNA and SH proteins, respectively, were fused with MEL cells. Fusion of MEL cells with UV-treated rat hepatoma cells did not result in the activation of the mouse phenylalanine hydroxylase gene. UV treatment damages both DNA and RNA. These data suggested that RNA was involved in the regulation of phenylalanine hydroxylase gene. Additional evidence for the role of RNA in the phenylalanine hydroxylase gene regulation was obtained from RNA transfection studies. RNA only from cells which express phenylalanine hydroxylase, such as rat hepatoma cells and MEL cybrids, when introduced into MEL cells by the CaPO4 coprecipitation method, resulted in the permanent activation of the mouse phenylalanine hydroxylase gene.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Coreactivation of four inactive X genes in a hamster x human hybrid and persistence of late replication of reactivated X chromosome. Transformation of temperature-sensitive growth mutant of BHK21 cell line to wild-type phenotype with hamster and mouse DNA. Assignment of murine cellular Harvey ras gene to chromosome 7. Mammalian mitochondrial mutants selected for resistance to the cytochrome b inhibitors HQNO or myxothiazol. Assignment of gene(s) coding for antigen defined by monoclonal antibody 2B2.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1