{"title":"人类干扰素- α一致序列的三维模型。","authors":"A P Korn, D R Rose, E N Fish","doi":"10.1089/jir.1994.14.1","DOIUrl":null,"url":null,"abstract":"<p><p>A computer-built, three-dimensional, atomic-level model for human interferon-alpha (IFN-alpha) was constructed. This model was prepared using the primary amino acid sequence of consensus IFN-alpha (IFN-alpha Con1) and the alpha-carbon Cartesian coordinates of murine IFN-beta as a homolog guide to the model building. In agreement with an earlier report from this laboratory, the two domains 29-35 and 123-140 are in close spatial proximity in this model, and may constitute a receptor recognition domain, whereas the region bounded by residues 78-95 is somewhat removed from this region on the molecule and may constitute an alternative active site. Extrapolating from the model, we propose that, of the stretch 123-140, the residues that are exposed are 123, 125, 126, 128-130, and 132-139; and of the stretch 29-35, all are accessible. Additionally, we propose that there may be sufficient complexity in the Type 1 IFN receptor to account for the differential sensitivities between IFN-alpha s and IFN-beta that may be associated with residue differences in the region 78-95, specifically at residues 84, 86, and 87. This model conforms with experimental data that identify specific amino acid residues in human IFN-alpha that either do, or do not, affect the active conformation and biological activities of the molecule.</p>","PeriodicalId":16268,"journal":{"name":"Journal of interferon research","volume":"14 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"1994-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/jir.1994.14.1","citationCount":"32","resultStr":"{\"title\":\"Three-dimensional model of a human interferon-alpha consensus sequence.\",\"authors\":\"A P Korn, D R Rose, E N Fish\",\"doi\":\"10.1089/jir.1994.14.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A computer-built, three-dimensional, atomic-level model for human interferon-alpha (IFN-alpha) was constructed. This model was prepared using the primary amino acid sequence of consensus IFN-alpha (IFN-alpha Con1) and the alpha-carbon Cartesian coordinates of murine IFN-beta as a homolog guide to the model building. In agreement with an earlier report from this laboratory, the two domains 29-35 and 123-140 are in close spatial proximity in this model, and may constitute a receptor recognition domain, whereas the region bounded by residues 78-95 is somewhat removed from this region on the molecule and may constitute an alternative active site. Extrapolating from the model, we propose that, of the stretch 123-140, the residues that are exposed are 123, 125, 126, 128-130, and 132-139; and of the stretch 29-35, all are accessible. Additionally, we propose that there may be sufficient complexity in the Type 1 IFN receptor to account for the differential sensitivities between IFN-alpha s and IFN-beta that may be associated with residue differences in the region 78-95, specifically at residues 84, 86, and 87. This model conforms with experimental data that identify specific amino acid residues in human IFN-alpha that either do, or do not, affect the active conformation and biological activities of the molecule.</p>\",\"PeriodicalId\":16268,\"journal\":{\"name\":\"Journal of interferon research\",\"volume\":\"14 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/jir.1994.14.1\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of interferon research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/jir.1994.14.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of interferon research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/jir.1994.14.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Three-dimensional model of a human interferon-alpha consensus sequence.
A computer-built, three-dimensional, atomic-level model for human interferon-alpha (IFN-alpha) was constructed. This model was prepared using the primary amino acid sequence of consensus IFN-alpha (IFN-alpha Con1) and the alpha-carbon Cartesian coordinates of murine IFN-beta as a homolog guide to the model building. In agreement with an earlier report from this laboratory, the two domains 29-35 and 123-140 are in close spatial proximity in this model, and may constitute a receptor recognition domain, whereas the region bounded by residues 78-95 is somewhat removed from this region on the molecule and may constitute an alternative active site. Extrapolating from the model, we propose that, of the stretch 123-140, the residues that are exposed are 123, 125, 126, 128-130, and 132-139; and of the stretch 29-35, all are accessible. Additionally, we propose that there may be sufficient complexity in the Type 1 IFN receptor to account for the differential sensitivities between IFN-alpha s and IFN-beta that may be associated with residue differences in the region 78-95, specifically at residues 84, 86, and 87. This model conforms with experimental data that identify specific amino acid residues in human IFN-alpha that either do, or do not, affect the active conformation and biological activities of the molecule.