{"title":"电镜标本制备过程中鞣酸对硫酸软骨素保留量的定量分析。","authors":"D Levanon, H Stein","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The ability of tannic acid to enhance binding of glycosaminoglycans to purified collagen was analysed in an in vitro system using amino sugar analysis on an amino acid analyser, transmission electron microscopy, and scanning electron microscopy. Collagen was purified by digestion with trypsin, papain, and hyaluronidase. Purified collagen was incubated with hyaluronic acid or with chondroitin sulphate glycosaminoglycan and then treated with tannic acid. Tannic acid was found to enhance retention during preparation for electron microscopy of either of the glycosaminoglycans onto collagen fibres. The ability of tannic acid to enhance binding of collagen and glycosaminoglycans might explain, at least in part, its structural reinforcement effect on resected synovial joint-apposing surfaces during preparation for scanning electron microscopy.</p>","PeriodicalId":22439,"journal":{"name":"The Histochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1995-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative analysis of chondroitin sulphate retention by tannic acid during preparation of specimens for electron microscopy.\",\"authors\":\"D Levanon, H Stein\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ability of tannic acid to enhance binding of glycosaminoglycans to purified collagen was analysed in an in vitro system using amino sugar analysis on an amino acid analyser, transmission electron microscopy, and scanning electron microscopy. Collagen was purified by digestion with trypsin, papain, and hyaluronidase. Purified collagen was incubated with hyaluronic acid or with chondroitin sulphate glycosaminoglycan and then treated with tannic acid. Tannic acid was found to enhance retention during preparation for electron microscopy of either of the glycosaminoglycans onto collagen fibres. The ability of tannic acid to enhance binding of collagen and glycosaminoglycans might explain, at least in part, its structural reinforcement effect on resected synovial joint-apposing surfaces during preparation for scanning electron microscopy.</p>\",\"PeriodicalId\":22439,\"journal\":{\"name\":\"The Histochemical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Histochemical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Histochemical Journal","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantitative analysis of chondroitin sulphate retention by tannic acid during preparation of specimens for electron microscopy.
The ability of tannic acid to enhance binding of glycosaminoglycans to purified collagen was analysed in an in vitro system using amino sugar analysis on an amino acid analyser, transmission electron microscopy, and scanning electron microscopy. Collagen was purified by digestion with trypsin, papain, and hyaluronidase. Purified collagen was incubated with hyaluronic acid or with chondroitin sulphate glycosaminoglycan and then treated with tannic acid. Tannic acid was found to enhance retention during preparation for electron microscopy of either of the glycosaminoglycans onto collagen fibres. The ability of tannic acid to enhance binding of collagen and glycosaminoglycans might explain, at least in part, its structural reinforcement effect on resected synovial joint-apposing surfaces during preparation for scanning electron microscopy.