微生物脲的分子生物学。

H L Mobley, M D Island, R P Hausinger
{"title":"微生物脲的分子生物学。","authors":"H L Mobley,&nbsp;M D Island,&nbsp;R P Hausinger","doi":"10.1128/mr.59.3.451-480.1995","DOIUrl":null,"url":null,"abstract":"<p><p>Urease (urea amidohydrolase; EC 3.5.1.5) catalyzes the hydrolysis of urea to yield ammonia and carbamate. The latter compound spontaneously decomposes to yield another molecule of ammonia and carbonic acid. The urease phenotype is widely distributed across the bacterial kingdom, and the gene clusters encoding this enzyme have been cloned from numerous bacterial species. The complete nucleotide sequence, ranging from 5.15 to 6.45 kb, has been determined for five species including Bacillus sp. strain TB-90, Klebsiella aerogenes, Proteus mirabilis, Helicobacter pylori, and Yersinia enterocolitica. Sequences for selected genes have been determined for at least 10 other bacterial species and the jack bean enzyme. Urease synthesis can be nitrogen regulated, urea inducible, or constitutive. The crystal structure of the K. aerogenes enzyme has been determined. When combined with chemical modification studies, biophysical and spectroscopic analyses, site-directed mutagenesis results, and kinetic inhibition experiments, the structure provides important insight into the mechanism of catalysis. Synthesis of active enzyme requires incorporation of both carbon dioxide and nickel ions into the protein. Accessory genes have been shown to be required for activation of urease apoprotein, and roles for the accessory proteins in metallocenter assembly have been proposed. Urease is central to the virulence of P. mirabilis and H. pylori. Urea hydrolysis by P. mirabilis in the urinary tract leads directly to urolithiasis (stone formation) and contributes to the development of acute pyelonephritis. The urease of H. pylori is necessary for colonization of the gastric mucosa in experimental animal models of gastritis and serves as the major antigen and diagnostic marker for gastritis and peptic ulcer disease in humans. In addition, the urease of Y. enterocolitica has been implicated as an arthritogenic factor in the development of infection-induced reactive arthritis. The significant progress in our understanding of the molecular biology of microbial ureases is reviewed.</p>","PeriodicalId":18499,"journal":{"name":"Microbiological reviews","volume":"59 3","pages":"451-80"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC239369/pdf/590451.pdf","citationCount":"1205","resultStr":"{\"title\":\"Molecular biology of microbial ureases.\",\"authors\":\"H L Mobley,&nbsp;M D Island,&nbsp;R P Hausinger\",\"doi\":\"10.1128/mr.59.3.451-480.1995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Urease (urea amidohydrolase; EC 3.5.1.5) catalyzes the hydrolysis of urea to yield ammonia and carbamate. The latter compound spontaneously decomposes to yield another molecule of ammonia and carbonic acid. The urease phenotype is widely distributed across the bacterial kingdom, and the gene clusters encoding this enzyme have been cloned from numerous bacterial species. The complete nucleotide sequence, ranging from 5.15 to 6.45 kb, has been determined for five species including Bacillus sp. strain TB-90, Klebsiella aerogenes, Proteus mirabilis, Helicobacter pylori, and Yersinia enterocolitica. Sequences for selected genes have been determined for at least 10 other bacterial species and the jack bean enzyme. Urease synthesis can be nitrogen regulated, urea inducible, or constitutive. The crystal structure of the K. aerogenes enzyme has been determined. When combined with chemical modification studies, biophysical and spectroscopic analyses, site-directed mutagenesis results, and kinetic inhibition experiments, the structure provides important insight into the mechanism of catalysis. Synthesis of active enzyme requires incorporation of both carbon dioxide and nickel ions into the protein. Accessory genes have been shown to be required for activation of urease apoprotein, and roles for the accessory proteins in metallocenter assembly have been proposed. Urease is central to the virulence of P. mirabilis and H. pylori. Urea hydrolysis by P. mirabilis in the urinary tract leads directly to urolithiasis (stone formation) and contributes to the development of acute pyelonephritis. The urease of H. pylori is necessary for colonization of the gastric mucosa in experimental animal models of gastritis and serves as the major antigen and diagnostic marker for gastritis and peptic ulcer disease in humans. In addition, the urease of Y. enterocolitica has been implicated as an arthritogenic factor in the development of infection-induced reactive arthritis. The significant progress in our understanding of the molecular biology of microbial ureases is reviewed.</p>\",\"PeriodicalId\":18499,\"journal\":{\"name\":\"Microbiological reviews\",\"volume\":\"59 3\",\"pages\":\"451-80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC239369/pdf/590451.pdf\",\"citationCount\":\"1205\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiological reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1128/mr.59.3.451-480.1995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiological reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/mr.59.3.451-480.1995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1205

摘要

脲酶;尿素酰胺水解酶;EC(3.5.1.5)催化尿素水解生成氨和氨基甲酸酯。后一种化合物会自发分解产生另一分子氨和碳酸。脲酶表型广泛分布在细菌界,编码这种酶的基因簇已经从许多细菌物种中克隆出来。结果表明,菌株TB-90、产气克雷伯菌、奇异变形杆菌、幽门螺杆菌、小肠结肠炎耶尔森菌等5种细菌的完整核苷酸序列在5.15 ~ 6.45 kb之间。已经确定了至少10种其他细菌和豆荚酶的选定基因序列。脲酶的合成可以是氮调控的、尿素诱导的或本构的。已确定了产气k酶的晶体结构。当结合化学修饰研究、生物物理和光谱分析、定点诱变结果和动力学抑制实验时,该结构提供了对催化机制的重要见解。活性酶的合成需要将二氧化碳和镍离子结合到蛋白质中。辅助基因已被证明是脲酶载脂蛋白激活所必需的,并且已经提出了辅助蛋白在金属中心组装中的作用。脲酶是神奇杆菌和幽门螺杆菌毒力的核心。尿路中奇异单胞菌的尿素水解直接导致尿石症(结石形成),并有助于急性肾盂肾炎的发展。幽门螺杆菌脲酶是胃炎实验动物模型胃粘膜定植所必需的,是人类胃炎和消化性溃疡疾病的主要抗原和诊断标志物。此外,小肠结肠炎脲酶在感染诱导的反应性关节炎的发展中被认为是一种关节炎源性因子。综述了微生物酶分子生物学研究的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular biology of microbial ureases.

Urease (urea amidohydrolase; EC 3.5.1.5) catalyzes the hydrolysis of urea to yield ammonia and carbamate. The latter compound spontaneously decomposes to yield another molecule of ammonia and carbonic acid. The urease phenotype is widely distributed across the bacterial kingdom, and the gene clusters encoding this enzyme have been cloned from numerous bacterial species. The complete nucleotide sequence, ranging from 5.15 to 6.45 kb, has been determined for five species including Bacillus sp. strain TB-90, Klebsiella aerogenes, Proteus mirabilis, Helicobacter pylori, and Yersinia enterocolitica. Sequences for selected genes have been determined for at least 10 other bacterial species and the jack bean enzyme. Urease synthesis can be nitrogen regulated, urea inducible, or constitutive. The crystal structure of the K. aerogenes enzyme has been determined. When combined with chemical modification studies, biophysical and spectroscopic analyses, site-directed mutagenesis results, and kinetic inhibition experiments, the structure provides important insight into the mechanism of catalysis. Synthesis of active enzyme requires incorporation of both carbon dioxide and nickel ions into the protein. Accessory genes have been shown to be required for activation of urease apoprotein, and roles for the accessory proteins in metallocenter assembly have been proposed. Urease is central to the virulence of P. mirabilis and H. pylori. Urea hydrolysis by P. mirabilis in the urinary tract leads directly to urolithiasis (stone formation) and contributes to the development of acute pyelonephritis. The urease of H. pylori is necessary for colonization of the gastric mucosa in experimental animal models of gastritis and serves as the major antigen and diagnostic marker for gastritis and peptic ulcer disease in humans. In addition, the urease of Y. enterocolitica has been implicated as an arthritogenic factor in the development of infection-induced reactive arthritis. The significant progress in our understanding of the molecular biology of microbial ureases is reviewed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proton-dependent multidrug efflux systems. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). The secretory pathway of protists: spatial and functional organization and evolution. T helper cell activation and human retroviral pathogenesis. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1