{"title":"咖啡对小鼠经胎盘遗传毒性的抑制作用","authors":"Suresh K. Abraham","doi":"10.1016/0165-7992(95)90032-2","DOIUrl":null,"url":null,"abstract":"<div><p>Experiments were carried out to ascertain whether or not coffee can modulate the genotoxicity of transplacentally active genotoxins/carcinogens. Coffee was orally administered to Swiss albino mice (gestation, 15–16 days), 90 min before exposure to cyclophosphamide (CPH), <em>N</em>-nitrosodiethylamine (DEN), <em>N</em>-nitroso-<em>N</em>-ethylurea (ENU) and mitomycin C (MMC). At the end of the treatment, the induction of micronucleated polychromatic erythrocytes (MnPCEs) was evaluated in the fetal liver (FL), feta blood (FB) and maternal bone marrow (MBM). The results of this transplacental micronucleus test showed a consistent trend which suggests that the administration of coffee instead of water (control) can significantly inhibit the genotoxic effects of CPH, DEN, ENU and MMC in the FL and FB. When the fetal cells were evaluated either 22 and 28 h after CPH treatment, or 24 and 48 h after MMC treatment, there was no evidence for a significant interaction between the sampling time and the inhibitory effect of coffee (two-factor) ANOVA). However, a significant interaction was observed between sampling time and the inhibitory effects of coffee when the fetal cells were sampled 24 and 40 h after DEN treatment (two-factor ANOVA). Coffee was also effective is significantly inhibiting the genotoxicity of CPH, ENU and MMC in the MBM. The differential response of fetal and maternal target cells was evident from this study.</p></div>","PeriodicalId":100934,"journal":{"name":"Mutation Research Letters","volume":"347 1","pages":"Pages 45-52"},"PeriodicalIF":0.0000,"publicationDate":"1995-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0165-7992(95)90032-2","citationCount":"15","resultStr":"{\"title\":\"Inhibitory effects of coffee on transplacental genotoxicity in mice\",\"authors\":\"Suresh K. Abraham\",\"doi\":\"10.1016/0165-7992(95)90032-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Experiments were carried out to ascertain whether or not coffee can modulate the genotoxicity of transplacentally active genotoxins/carcinogens. Coffee was orally administered to Swiss albino mice (gestation, 15–16 days), 90 min before exposure to cyclophosphamide (CPH), <em>N</em>-nitrosodiethylamine (DEN), <em>N</em>-nitroso-<em>N</em>-ethylurea (ENU) and mitomycin C (MMC). At the end of the treatment, the induction of micronucleated polychromatic erythrocytes (MnPCEs) was evaluated in the fetal liver (FL), feta blood (FB) and maternal bone marrow (MBM). The results of this transplacental micronucleus test showed a consistent trend which suggests that the administration of coffee instead of water (control) can significantly inhibit the genotoxic effects of CPH, DEN, ENU and MMC in the FL and FB. When the fetal cells were evaluated either 22 and 28 h after CPH treatment, or 24 and 48 h after MMC treatment, there was no evidence for a significant interaction between the sampling time and the inhibitory effect of coffee (two-factor) ANOVA). However, a significant interaction was observed between sampling time and the inhibitory effects of coffee when the fetal cells were sampled 24 and 40 h after DEN treatment (two-factor ANOVA). Coffee was also effective is significantly inhibiting the genotoxicity of CPH, ENU and MMC in the MBM. The differential response of fetal and maternal target cells was evident from this study.</p></div>\",\"PeriodicalId\":100934,\"journal\":{\"name\":\"Mutation Research Letters\",\"volume\":\"347 1\",\"pages\":\"Pages 45-52\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0165-7992(95)90032-2\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0165799295900322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0165799295900322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inhibitory effects of coffee on transplacental genotoxicity in mice
Experiments were carried out to ascertain whether or not coffee can modulate the genotoxicity of transplacentally active genotoxins/carcinogens. Coffee was orally administered to Swiss albino mice (gestation, 15–16 days), 90 min before exposure to cyclophosphamide (CPH), N-nitrosodiethylamine (DEN), N-nitroso-N-ethylurea (ENU) and mitomycin C (MMC). At the end of the treatment, the induction of micronucleated polychromatic erythrocytes (MnPCEs) was evaluated in the fetal liver (FL), feta blood (FB) and maternal bone marrow (MBM). The results of this transplacental micronucleus test showed a consistent trend which suggests that the administration of coffee instead of water (control) can significantly inhibit the genotoxic effects of CPH, DEN, ENU and MMC in the FL and FB. When the fetal cells were evaluated either 22 and 28 h after CPH treatment, or 24 and 48 h after MMC treatment, there was no evidence for a significant interaction between the sampling time and the inhibitory effect of coffee (two-factor) ANOVA). However, a significant interaction was observed between sampling time and the inhibitory effects of coffee when the fetal cells were sampled 24 and 40 h after DEN treatment (two-factor ANOVA). Coffee was also effective is significantly inhibiting the genotoxicity of CPH, ENU and MMC in the MBM. The differential response of fetal and maternal target cells was evident from this study.