高脂蛋白血症的药物治疗前景。

Diabete & metabolisme Pub Date : 1995-04-01
J Davignon
{"title":"高脂蛋白血症的药物治疗前景。","authors":"J Davignon","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Prospects for therapy for hyperlipoproteinaemia are likely to rely more heavily on improvement of known molecules than on development of new ones aimed at various components of the plasma lipid transport system. Promising advances are revealed in both directions. A new synthetic inhibitor of HMG CoA reductase, atorvastatin, lowers plasma low-density lipoprotein (LDL)-cholesterol and triglycerides and increases high-density lipoprotein (HDL)-cholesterol with greater potency than currently available drugs of this class. A highly selective thyromimetic, CGS 26214, virtually devoid of cardiovascular effects, has potent cholesterol-lowering activity in several models, reduces post-prandial response to a fat load in rats and markedly lowers Lp(a) concentrations in monkeys. There is a trend to develop inhibitors of acyl CoA: cholesterol acyltransferase (ACAT) with more than one desirable activity. Thus, ACA-147, which inhibits cholesterol absorption, reduces LDL, prevents their oxidation and increases HDL-cholesterol, was antiatherogenic in cholesterol-fed rabbits. Sch48461 has emerged as an inhibitor of cholesterol absorption by an as yet unknown mechanism unrelated to ACAT inhibition, while a synthetic saponin, CP- 148,623, which prevents the entry of cholesterol into intestinal mucosa, has a potential for combination therapy. Approaches which may find applications in a more distant future include molecular cages to trap cholesterol selectively, \"cholesterol vaccination\", overexpression of the apolipoprotein E gene in the skin, and gene therapy. With improvements in understanding of the pathophysiology of dyslipoproteinaemias, drug discovery and development may focus more in future on the specific causes of disease.</p>","PeriodicalId":11111,"journal":{"name":"Diabete & metabolisme","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1995-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prospects for drug therapy for hyperlipoproteinaemia.\",\"authors\":\"J Davignon\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prospects for therapy for hyperlipoproteinaemia are likely to rely more heavily on improvement of known molecules than on development of new ones aimed at various components of the plasma lipid transport system. Promising advances are revealed in both directions. A new synthetic inhibitor of HMG CoA reductase, atorvastatin, lowers plasma low-density lipoprotein (LDL)-cholesterol and triglycerides and increases high-density lipoprotein (HDL)-cholesterol with greater potency than currently available drugs of this class. A highly selective thyromimetic, CGS 26214, virtually devoid of cardiovascular effects, has potent cholesterol-lowering activity in several models, reduces post-prandial response to a fat load in rats and markedly lowers Lp(a) concentrations in monkeys. There is a trend to develop inhibitors of acyl CoA: cholesterol acyltransferase (ACAT) with more than one desirable activity. Thus, ACA-147, which inhibits cholesterol absorption, reduces LDL, prevents their oxidation and increases HDL-cholesterol, was antiatherogenic in cholesterol-fed rabbits. Sch48461 has emerged as an inhibitor of cholesterol absorption by an as yet unknown mechanism unrelated to ACAT inhibition, while a synthetic saponin, CP- 148,623, which prevents the entry of cholesterol into intestinal mucosa, has a potential for combination therapy. Approaches which may find applications in a more distant future include molecular cages to trap cholesterol selectively, \\\"cholesterol vaccination\\\", overexpression of the apolipoprotein E gene in the skin, and gene therapy. With improvements in understanding of the pathophysiology of dyslipoproteinaemias, drug discovery and development may focus more in future on the specific causes of disease.</p>\",\"PeriodicalId\":11111,\"journal\":{\"name\":\"Diabete & metabolisme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabete & metabolisme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabete & metabolisme","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高脂蛋白血症的治疗前景可能更多地依赖于已知分子的改进,而不是针对血浆脂质转运系统的各种组成部分开发新的分子。在这两个方向上都显示出有希望的进展。一种新的合成HMG辅酶A还原酶抑制剂阿托伐他汀降低血浆低密度脂蛋白(LDL)-胆固醇和甘油三酯,并增加高密度脂蛋白(HDL)-胆固醇,其效力比目前可用的同类药物更强。一种高度选择性的拟甲状腺药物CGS 26214,几乎没有心血管作用,在几种模型中具有有效的降胆固醇活性,减少了大鼠对脂肪负荷的餐后反应,并显着降低了猴子的Lp(A)浓度。有一个趋势是开发抑制剂酰基辅酶a:胆固醇酰基转移酶(ACAT)具有多种理想的活性。因此,ACA-147抑制胆固醇吸收,降低低密度脂蛋白,防止其氧化并增加高密度脂蛋白胆固醇,在胆固醇喂养的兔子中具有抗动脉粥样硬化作用。Sch48461已成为胆固醇吸收抑制剂,其机制与ACAT抑制无关,目前尚不清楚,而合成皂苷CP- 148,623可阻止胆固醇进入肠粘膜,具有联合治疗的潜力。在更遥远的未来,可能会有应用的方法包括选择性捕获胆固醇的分子笼、“胆固醇疫苗”、皮肤中载脂蛋白E基因的过度表达以及基因治疗。随着对异常脂蛋白贫血病理生理的认识的提高,药物的发现和开发可能会更多地关注疾病的具体原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prospects for drug therapy for hyperlipoproteinaemia.

Prospects for therapy for hyperlipoproteinaemia are likely to rely more heavily on improvement of known molecules than on development of new ones aimed at various components of the plasma lipid transport system. Promising advances are revealed in both directions. A new synthetic inhibitor of HMG CoA reductase, atorvastatin, lowers plasma low-density lipoprotein (LDL)-cholesterol and triglycerides and increases high-density lipoprotein (HDL)-cholesterol with greater potency than currently available drugs of this class. A highly selective thyromimetic, CGS 26214, virtually devoid of cardiovascular effects, has potent cholesterol-lowering activity in several models, reduces post-prandial response to a fat load in rats and markedly lowers Lp(a) concentrations in monkeys. There is a trend to develop inhibitors of acyl CoA: cholesterol acyltransferase (ACAT) with more than one desirable activity. Thus, ACA-147, which inhibits cholesterol absorption, reduces LDL, prevents their oxidation and increases HDL-cholesterol, was antiatherogenic in cholesterol-fed rabbits. Sch48461 has emerged as an inhibitor of cholesterol absorption by an as yet unknown mechanism unrelated to ACAT inhibition, while a synthetic saponin, CP- 148,623, which prevents the entry of cholesterol into intestinal mucosa, has a potential for combination therapy. Approaches which may find applications in a more distant future include molecular cages to trap cholesterol selectively, "cholesterol vaccination", overexpression of the apolipoprotein E gene in the skin, and gene therapy. With improvements in understanding of the pathophysiology of dyslipoproteinaemias, drug discovery and development may focus more in future on the specific causes of disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Glucagon-like peptide-1 and control of insulin secretion. Diabetes and haemochromatosis: current concepts, management and prevention. The IGF system in metabolism regulation. Locus on chromosome 18 cosegregates with diabetes in the BB/OK rat subline. Effects of infused sodium lactate on glucose and energy metabolism in healthy humans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1