{"title":"豚鼠离体结肠中血清素与多种受体和神经递质的相互作用。","authors":"M R Briejer, L M Akkermans, J A Schuurkes","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The motor effects of 5-hydroxytryptamine (5-HT; serotonin) on the guinea-pig isolated proximal colon were studied and analyzed. A classical organ bath setup was used to measure the longitudinal muscle responses isotonically. 5-Hydroxytryptamine induced concentration-dependent contractions which were preceded by relaxations at low concentrations. By means of the neurotoxin, tetrodotoxin, the muscarinic cholinoceptor antagonist, atropine, and selective 5-HT receptor antagonists, it was shown that the contractions to 5-HT are mediated by 5-HT2A receptors, localized on the smooth muscle, and by 5-HT3 and 5-HT4 receptors, localized on cholinergic nerves. The relaxation was abolished by tetrodotoxin and appeared to be mediated by two 5-HT receptor subtypes; the pharmacological profile of the high affinity 5-HT receptor resembled that of 5-HT2C receptors though it displayed also pronounced differences. Subsequently, it was shown that nitric oxide is the mediator released by lower concentrations of 5-HT, while, at higher concentrations, adenosine triphosphate could be involved as an end neurotransmitter as well. No evidence for a peptidergic neurotransmitter, such as vasoactive intestinal polypeptide, was obtained. Results with two 5-HT analogues confirmed the presence of a dual 5-HT receptor system (high and low affinity) regulating each the release of a different neurotransmitter (nitric oxide and adenosine triphosphate, respectively). The above described results stress the important role of 5-HT as a neurotransmitter involved in gastrointestinal motility.</p>","PeriodicalId":8166,"journal":{"name":"Archives internationales de pharmacodynamie et de therapie","volume":"329 1","pages":"121-33"},"PeriodicalIF":0.0000,"publicationDate":"1995-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactions of serotonin with multiple receptors and neurotransmitters in the guinea-pig isolated colon.\",\"authors\":\"M R Briejer, L M Akkermans, J A Schuurkes\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The motor effects of 5-hydroxytryptamine (5-HT; serotonin) on the guinea-pig isolated proximal colon were studied and analyzed. A classical organ bath setup was used to measure the longitudinal muscle responses isotonically. 5-Hydroxytryptamine induced concentration-dependent contractions which were preceded by relaxations at low concentrations. By means of the neurotoxin, tetrodotoxin, the muscarinic cholinoceptor antagonist, atropine, and selective 5-HT receptor antagonists, it was shown that the contractions to 5-HT are mediated by 5-HT2A receptors, localized on the smooth muscle, and by 5-HT3 and 5-HT4 receptors, localized on cholinergic nerves. The relaxation was abolished by tetrodotoxin and appeared to be mediated by two 5-HT receptor subtypes; the pharmacological profile of the high affinity 5-HT receptor resembled that of 5-HT2C receptors though it displayed also pronounced differences. Subsequently, it was shown that nitric oxide is the mediator released by lower concentrations of 5-HT, while, at higher concentrations, adenosine triphosphate could be involved as an end neurotransmitter as well. No evidence for a peptidergic neurotransmitter, such as vasoactive intestinal polypeptide, was obtained. Results with two 5-HT analogues confirmed the presence of a dual 5-HT receptor system (high and low affinity) regulating each the release of a different neurotransmitter (nitric oxide and adenosine triphosphate, respectively). The above described results stress the important role of 5-HT as a neurotransmitter involved in gastrointestinal motility.</p>\",\"PeriodicalId\":8166,\"journal\":{\"name\":\"Archives internationales de pharmacodynamie et de therapie\",\"volume\":\"329 1\",\"pages\":\"121-33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives internationales de pharmacodynamie et de therapie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives internationales de pharmacodynamie et de therapie","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interactions of serotonin with multiple receptors and neurotransmitters in the guinea-pig isolated colon.
The motor effects of 5-hydroxytryptamine (5-HT; serotonin) on the guinea-pig isolated proximal colon were studied and analyzed. A classical organ bath setup was used to measure the longitudinal muscle responses isotonically. 5-Hydroxytryptamine induced concentration-dependent contractions which were preceded by relaxations at low concentrations. By means of the neurotoxin, tetrodotoxin, the muscarinic cholinoceptor antagonist, atropine, and selective 5-HT receptor antagonists, it was shown that the contractions to 5-HT are mediated by 5-HT2A receptors, localized on the smooth muscle, and by 5-HT3 and 5-HT4 receptors, localized on cholinergic nerves. The relaxation was abolished by tetrodotoxin and appeared to be mediated by two 5-HT receptor subtypes; the pharmacological profile of the high affinity 5-HT receptor resembled that of 5-HT2C receptors though it displayed also pronounced differences. Subsequently, it was shown that nitric oxide is the mediator released by lower concentrations of 5-HT, while, at higher concentrations, adenosine triphosphate could be involved as an end neurotransmitter as well. No evidence for a peptidergic neurotransmitter, such as vasoactive intestinal polypeptide, was obtained. Results with two 5-HT analogues confirmed the presence of a dual 5-HT receptor system (high and low affinity) regulating each the release of a different neurotransmitter (nitric oxide and adenosine triphosphate, respectively). The above described results stress the important role of 5-HT as a neurotransmitter involved in gastrointestinal motility.