{"title":"吡啶醇促进基底核损伤引起的皮质胆碱能缺陷的恢复。","authors":"A Toledano, M L Bentura","doi":"10.1007/BF02253438","DOIUrl":null,"url":null,"abstract":"<p><p>The effect of a nootropic, Pyritinol, on the recovery of cortical cholinergic deficits induced by injury of the nucleus basalis has been tested on two groups of unilateral quisqualic acid nbM-lesioned rats. The first group had a 30 nmol lesion producing a cortical cholinergic impairment at 21 days, with a spontaneous recovery at 45 days. The second group had a 50 nmol lesion that produced a deeper cholinergic deficit, which did not recover at 45 days. Pyritinol enhanced the recovery in the 30 nmol group of animals on the 21st day after surgery. The recovery was measured as an increase in the activities of acetylcholinesterase (AChE), choline acetyltransferase (ChAT) and the high affinity choline uptake system, and the histochemical densities of the cortical AChE network and the M2 receptor. Histochemical analysis of the nbM enabled cortical recovery to be related to the number of surviving neurons and also to their hypertrophy and AChE-ChAT hyperactivity. Pyritinol enhanced recovery in 30 nmol lesioned animals but in the other group, with a lower number of surviving neurons and a lower ability of the cells to become hypertrophic, the drug was unable to promote cortical recovery.</p>","PeriodicalId":16466,"journal":{"name":"Journal of Neural Transmission - Parkinson's Disease and Dementia Section","volume":"7 3","pages":"195-209"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF02253438","citationCount":"13","resultStr":"{\"title\":\"Pyritinol facilitates the recovery of cortical cholinergic deficits caused by nucleus basalis lesions.\",\"authors\":\"A Toledano, M L Bentura\",\"doi\":\"10.1007/BF02253438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The effect of a nootropic, Pyritinol, on the recovery of cortical cholinergic deficits induced by injury of the nucleus basalis has been tested on two groups of unilateral quisqualic acid nbM-lesioned rats. The first group had a 30 nmol lesion producing a cortical cholinergic impairment at 21 days, with a spontaneous recovery at 45 days. The second group had a 50 nmol lesion that produced a deeper cholinergic deficit, which did not recover at 45 days. Pyritinol enhanced the recovery in the 30 nmol group of animals on the 21st day after surgery. The recovery was measured as an increase in the activities of acetylcholinesterase (AChE), choline acetyltransferase (ChAT) and the high affinity choline uptake system, and the histochemical densities of the cortical AChE network and the M2 receptor. Histochemical analysis of the nbM enabled cortical recovery to be related to the number of surviving neurons and also to their hypertrophy and AChE-ChAT hyperactivity. Pyritinol enhanced recovery in 30 nmol lesioned animals but in the other group, with a lower number of surviving neurons and a lower ability of the cells to become hypertrophic, the drug was unable to promote cortical recovery.</p>\",\"PeriodicalId\":16466,\"journal\":{\"name\":\"Journal of Neural Transmission - Parkinson's Disease and Dementia Section\",\"volume\":\"7 3\",\"pages\":\"195-209\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/BF02253438\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neural Transmission - Parkinson's Disease and Dementia Section\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/BF02253438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neural Transmission - Parkinson's Disease and Dementia Section","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF02253438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pyritinol facilitates the recovery of cortical cholinergic deficits caused by nucleus basalis lesions.
The effect of a nootropic, Pyritinol, on the recovery of cortical cholinergic deficits induced by injury of the nucleus basalis has been tested on two groups of unilateral quisqualic acid nbM-lesioned rats. The first group had a 30 nmol lesion producing a cortical cholinergic impairment at 21 days, with a spontaneous recovery at 45 days. The second group had a 50 nmol lesion that produced a deeper cholinergic deficit, which did not recover at 45 days. Pyritinol enhanced the recovery in the 30 nmol group of animals on the 21st day after surgery. The recovery was measured as an increase in the activities of acetylcholinesterase (AChE), choline acetyltransferase (ChAT) and the high affinity choline uptake system, and the histochemical densities of the cortical AChE network and the M2 receptor. Histochemical analysis of the nbM enabled cortical recovery to be related to the number of surviving neurons and also to their hypertrophy and AChE-ChAT hyperactivity. Pyritinol enhanced recovery in 30 nmol lesioned animals but in the other group, with a lower number of surviving neurons and a lower ability of the cells to become hypertrophic, the drug was unable to promote cortical recovery.