C Mytilineou, P Werner, S Molinari, A Di Rocco, G Cohen, M D Yahr
{"title":"帕金森病患者成纤维细胞中丙酮酸氧化脱羧受损","authors":"C Mytilineou, P Werner, S Molinari, A Di Rocco, G Cohen, M D Yahr","doi":"10.1007/BF02260943","DOIUrl":null,"url":null,"abstract":"<p><p>Whether or not a reported deficiency in brain mitochondrial complex I activity in Parkinson's disease represents a defect encompassing other organs or tissues has been a source of some controversy. We have examined mitochondrial respiration in fibroblasts from patients with Parkinson's disease by measuring the oxidative decarboxylation of [2-14C]pyruvate and [1,4-14C]succinate. We report that oxidation of pyruvate but not succinate was significantly reduced in fibroblasts from Parkinson patients when compared to healthy controls. These observations support the view that a widespread deficit in mitochondrial respiration exists in Parkinson's disease. Fibroblast cultures, moreover, are a source of affected proliferating cells, which can be used for in vitro studies of the nature of the respiratory defect and for testing of pharmacological interventions to correct the deficiency.</p>","PeriodicalId":16466,"journal":{"name":"Journal of Neural Transmission - Parkinson's Disease and Dementia Section","volume":"8 3","pages":"223-8"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF02260943","citationCount":"95","resultStr":"{\"title\":\"Impaired oxidative decarboxylation of pyruvate in fibroblasts from patients with Parkinson's disease.\",\"authors\":\"C Mytilineou, P Werner, S Molinari, A Di Rocco, G Cohen, M D Yahr\",\"doi\":\"10.1007/BF02260943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Whether or not a reported deficiency in brain mitochondrial complex I activity in Parkinson's disease represents a defect encompassing other organs or tissues has been a source of some controversy. We have examined mitochondrial respiration in fibroblasts from patients with Parkinson's disease by measuring the oxidative decarboxylation of [2-14C]pyruvate and [1,4-14C]succinate. We report that oxidation of pyruvate but not succinate was significantly reduced in fibroblasts from Parkinson patients when compared to healthy controls. These observations support the view that a widespread deficit in mitochondrial respiration exists in Parkinson's disease. Fibroblast cultures, moreover, are a source of affected proliferating cells, which can be used for in vitro studies of the nature of the respiratory defect and for testing of pharmacological interventions to correct the deficiency.</p>\",\"PeriodicalId\":16466,\"journal\":{\"name\":\"Journal of Neural Transmission - Parkinson's Disease and Dementia Section\",\"volume\":\"8 3\",\"pages\":\"223-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/BF02260943\",\"citationCount\":\"95\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neural Transmission - Parkinson's Disease and Dementia Section\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/BF02260943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neural Transmission - Parkinson's Disease and Dementia Section","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF02260943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impaired oxidative decarboxylation of pyruvate in fibroblasts from patients with Parkinson's disease.
Whether or not a reported deficiency in brain mitochondrial complex I activity in Parkinson's disease represents a defect encompassing other organs or tissues has been a source of some controversy. We have examined mitochondrial respiration in fibroblasts from patients with Parkinson's disease by measuring the oxidative decarboxylation of [2-14C]pyruvate and [1,4-14C]succinate. We report that oxidation of pyruvate but not succinate was significantly reduced in fibroblasts from Parkinson patients when compared to healthy controls. These observations support the view that a widespread deficit in mitochondrial respiration exists in Parkinson's disease. Fibroblast cultures, moreover, are a source of affected proliferating cells, which can be used for in vitro studies of the nature of the respiratory defect and for testing of pharmacological interventions to correct the deficiency.