三种统计技术在生物成像和建模方面具有很高的潜力。

M Fridman, J M Steele
{"title":"三种统计技术在生物成像和建模方面具有很高的潜力。","authors":"M Fridman,&nbsp;J M Steele","doi":"10.1007/978-1-4757-9788-6_15","DOIUrl":null,"url":null,"abstract":"<p><p>The three technologies that are surveyed here are (1) wavelet approximations, (2) hidden Markov models, and (3) the Markov chain Renaissance. The intention of the article is to provide an introduction to the benefits these technologies offer and to explain as far as possible the sources of their effectiveness. We also hope to suggest some useful relationships between these technologies and issues of importance on the agenda of biological and medical research.</p>","PeriodicalId":8697,"journal":{"name":"Basic life sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three statistical technologies with high potential in biological imaging and modeling.\",\"authors\":\"M Fridman,&nbsp;J M Steele\",\"doi\":\"10.1007/978-1-4757-9788-6_15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The three technologies that are surveyed here are (1) wavelet approximations, (2) hidden Markov models, and (3) the Markov chain Renaissance. The intention of the article is to provide an introduction to the benefits these technologies offer and to explain as far as possible the sources of their effectiveness. We also hope to suggest some useful relationships between these technologies and issues of importance on the agenda of biological and medical research.</p>\",\"PeriodicalId\":8697,\"journal\":{\"name\":\"Basic life sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic life sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-1-4757-9788-6_15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic life sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-4757-9788-6_15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这里调查的三种技术是:(1)小波近似,(2)隐马尔可夫模型,(3)马尔可夫链复兴。本文的目的是介绍这些技术提供的好处,并尽可能地解释其有效性的来源。我们还希望提出这些技术与生物和医学研究议程上的重要问题之间的一些有益关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Three statistical technologies with high potential in biological imaging and modeling.

The three technologies that are surveyed here are (1) wavelet approximations, (2) hidden Markov models, and (3) the Markov chain Renaissance. The intention of the article is to provide an introduction to the benefits these technologies offer and to explain as far as possible the sources of their effectiveness. We also hope to suggest some useful relationships between these technologies and issues of importance on the agenda of biological and medical research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic Engineering of Microorganisms for Chemicals Phenolic content and antioxidant activity: a study on plants eaten by a group of howler monkeys (Alouatta fusca). Tannins as nutritional constraints for elk and deer of the coastal Pacific Northwest. Professor Edwin Haslam, recipient of the 3rd Tannin Conference Award. Che farò senza polifenoli?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1