控制细菌氮同化的感觉成分。

E S Kamberov, M R Atkinson, J Feng, P Chandran, A J Ninfa
{"title":"控制细菌氮同化的感觉成分。","authors":"E S Kamberov,&nbsp;M R Atkinson,&nbsp;J Feng,&nbsp;P Chandran,&nbsp;A J Ninfa","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In enteric bacteria, the transcription of the Ntr regulon is regulated by a signal transduction system that measures and transmits information on the nitrogen status of the cell. Four of the components of this signal transduction apparatus have been previously identified, and the roles of these are known, to a first approximation, from studies with purified components. The sensor is a uridylyltransferase/uridylyl-removing enzyme (UTase/UR) that controls the uridylylation state of the PII protein. PII indirectly regulates the transcription of the Ntr regulon by acting through the kinase/phosphatase protein NRII. In the absence of unmodified PII, NRII autophosphorylates on a histidine residue, and these phosphoryl groups are transferred to the transcription factor NRI, resulting in the conversion of NRI to the form able to activate transcription. In the presence of PII and NRII, NRI approximately P is rapidly dephosphorylated, preventing the activation of Ntr transcription. This PII-dependent dephosphorylation of NRI approximately P is referred to as the regulated phosphatase activity. In this report, we describe improved methods for the purification of the UTase/UR and PII, and the crystallization of PII. We also present improved methods for the assay of the activities of the UTase/UR protein and PII. The results of our assays indicate that purified PII is effective in eliciting the regulated phosphatase activity, but does not affect the autophosphorylation of NRII or affect the transfer of phosphoryl groups from NRII approximately P to NRI. In addition, we demonstrate that the elicitation of the regulated phosphatase activity by PII is strongly dependent on the ratio of NRI approximately P to NRI, and that the isolated N-terminal domain of NRI, once phosphorylated, is dephosphorylated by the regulated phosphatase activity.</p>","PeriodicalId":72545,"journal":{"name":"Cellular & molecular biology research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensory components controlling bacterial nitrogen assimilation.\",\"authors\":\"E S Kamberov,&nbsp;M R Atkinson,&nbsp;J Feng,&nbsp;P Chandran,&nbsp;A J Ninfa\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In enteric bacteria, the transcription of the Ntr regulon is regulated by a signal transduction system that measures and transmits information on the nitrogen status of the cell. Four of the components of this signal transduction apparatus have been previously identified, and the roles of these are known, to a first approximation, from studies with purified components. The sensor is a uridylyltransferase/uridylyl-removing enzyme (UTase/UR) that controls the uridylylation state of the PII protein. PII indirectly regulates the transcription of the Ntr regulon by acting through the kinase/phosphatase protein NRII. In the absence of unmodified PII, NRII autophosphorylates on a histidine residue, and these phosphoryl groups are transferred to the transcription factor NRI, resulting in the conversion of NRI to the form able to activate transcription. In the presence of PII and NRII, NRI approximately P is rapidly dephosphorylated, preventing the activation of Ntr transcription. This PII-dependent dephosphorylation of NRI approximately P is referred to as the regulated phosphatase activity. In this report, we describe improved methods for the purification of the UTase/UR and PII, and the crystallization of PII. We also present improved methods for the assay of the activities of the UTase/UR protein and PII. The results of our assays indicate that purified PII is effective in eliciting the regulated phosphatase activity, but does not affect the autophosphorylation of NRII or affect the transfer of phosphoryl groups from NRII approximately P to NRI. In addition, we demonstrate that the elicitation of the regulated phosphatase activity by PII is strongly dependent on the ratio of NRI approximately P to NRI, and that the isolated N-terminal domain of NRI, once phosphorylated, is dephosphorylated by the regulated phosphatase activity.</p>\",\"PeriodicalId\":72545,\"journal\":{\"name\":\"Cellular & molecular biology research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular & molecular biology research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular & molecular biology research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在肠道细菌中,Ntr调控子的转录受一个信号转导系统的调控,该系统测量并传递细胞氮状态的信息。该信号转导装置的四个组成部分先前已被确定,并且这些组成部分的作用是已知的,从纯化组分的研究中得到初步估计。该传感器是一种尿苷基转移酶/尿苷基去除酶(UTase/UR),控制PII蛋白的尿苷化状态。PII通过激酶/磷酸酶蛋白NRII间接调节Ntr调控子的转录。在没有未经修饰的PII的情况下,NRII在组氨酸残基上自磷酸化,这些磷酸化基团被转移到转录因子NRI上,导致NRI转化为能够激活转录的形式。在PII和NRII存在的情况下,NRI大约P被迅速去磷酸化,阻止了Ntr转录的激活。这种pii依赖的NRI大约P的去磷酸化被称为调控的磷酸酶活性。在这篇报告中,我们描述了改进的UTase/UR和PII的纯化方法,以及PII的结晶。我们还提出了改进的方法来测定UTase/UR蛋白和PII的活性。我们的实验结果表明,纯化的PII可以有效地激发受调节的磷酸酶活性,但不影响NRII的自磷酸化,也不影响NRII约P向NRI的磷酸化基团的转移。此外,我们证明了PII对受调控的磷酸酶活性的激发强烈依赖于NRI大约P与NRI的比例,并且NRI分离的n端结构域一旦被磷酸化,就会被受调控的磷酸酶活性去磷酸化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensory components controlling bacterial nitrogen assimilation.

In enteric bacteria, the transcription of the Ntr regulon is regulated by a signal transduction system that measures and transmits information on the nitrogen status of the cell. Four of the components of this signal transduction apparatus have been previously identified, and the roles of these are known, to a first approximation, from studies with purified components. The sensor is a uridylyltransferase/uridylyl-removing enzyme (UTase/UR) that controls the uridylylation state of the PII protein. PII indirectly regulates the transcription of the Ntr regulon by acting through the kinase/phosphatase protein NRII. In the absence of unmodified PII, NRII autophosphorylates on a histidine residue, and these phosphoryl groups are transferred to the transcription factor NRI, resulting in the conversion of NRI to the form able to activate transcription. In the presence of PII and NRII, NRI approximately P is rapidly dephosphorylated, preventing the activation of Ntr transcription. This PII-dependent dephosphorylation of NRI approximately P is referred to as the regulated phosphatase activity. In this report, we describe improved methods for the purification of the UTase/UR and PII, and the crystallization of PII. We also present improved methods for the assay of the activities of the UTase/UR protein and PII. The results of our assays indicate that purified PII is effective in eliciting the regulated phosphatase activity, but does not affect the autophosphorylation of NRII or affect the transfer of phosphoryl groups from NRII approximately P to NRI. In addition, we demonstrate that the elicitation of the regulated phosphatase activity by PII is strongly dependent on the ratio of NRI approximately P to NRI, and that the isolated N-terminal domain of NRI, once phosphorylated, is dephosphorylated by the regulated phosphatase activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Demonstration of differentiation in hepatocyte progenitor cells using dipeptidyl peptidase IV deficient mutant rats. The tyrosine phosphorylation of a p72syk-like protein in activated murine resident peritoneal macrophages. Inhibition of cleavage by restriction endonucleases due to modifications induced in SV40 DNA by methyl methanesulfonate. Fast inducible repair of microinjected UV-irradiated SV40 DNA in monkey kidney cells. NADPH-diaphorase activity in piglet intestinal mucosa.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1