酪氨酸磷酸酶抑制剂快速激活干扰素- γ信号转导通路。

P Lamb, J Haslam, L Kessler, H M Seidel, R B Stein, J Rosen
{"title":"酪氨酸磷酸酶抑制剂快速激活干扰素- γ信号转导通路。","authors":"P Lamb,&nbsp;J Haslam,&nbsp;L Kessler,&nbsp;H M Seidel,&nbsp;R B Stein,&nbsp;J Rosen","doi":"10.1089/jir.1994.14.365","DOIUrl":null,"url":null,"abstract":"<p><p>Induction of gene expression by interferon-gamma involves the activation of a latent cytoplasmic transcription factor, p91, by phosphorylation on a single tyrosyl residue. This phosphorylation triggers dimerization, nuclear translocation, and the binding of p91 to interferon-gamma response elements present in the promoters of induced genes. Phosphorylation of p91 requires the activation of two tyrosine kinases, JAK1 and JAK2, that themselves become phosphorylated on tyrosyl residues shortly after interferon-gamma binds to its receptor. The importance of tyrosine phosphorylation in this pathway prompted us to investigate the role of protein tyrosine phosphatases in the regulation of the pathway. We find that in the absence of interferon-gamma, treatment of cells with an inhibitor of tyrosine phosphatases causes a rapid and potent activation of the components of the interferon-gamma signal transduction pathway and induces an interferon-gamma-responsive gene. This suggests that tyrosine phosphatases act both to repress the interferon-gamma signal transduction pathway in the absence of interferon-gamma and to downregulate the pathway after interferon-gamma induction.</p>","PeriodicalId":16268,"journal":{"name":"Journal of interferon research","volume":"14 6","pages":"365-73"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/jir.1994.14.365","citationCount":"22","resultStr":"{\"title\":\"Rapid activation of the interferon-gamma signal transduction pathway by inhibitors of tyrosine phosphatases.\",\"authors\":\"P Lamb,&nbsp;J Haslam,&nbsp;L Kessler,&nbsp;H M Seidel,&nbsp;R B Stein,&nbsp;J Rosen\",\"doi\":\"10.1089/jir.1994.14.365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Induction of gene expression by interferon-gamma involves the activation of a latent cytoplasmic transcription factor, p91, by phosphorylation on a single tyrosyl residue. This phosphorylation triggers dimerization, nuclear translocation, and the binding of p91 to interferon-gamma response elements present in the promoters of induced genes. Phosphorylation of p91 requires the activation of two tyrosine kinases, JAK1 and JAK2, that themselves become phosphorylated on tyrosyl residues shortly after interferon-gamma binds to its receptor. The importance of tyrosine phosphorylation in this pathway prompted us to investigate the role of protein tyrosine phosphatases in the regulation of the pathway. We find that in the absence of interferon-gamma, treatment of cells with an inhibitor of tyrosine phosphatases causes a rapid and potent activation of the components of the interferon-gamma signal transduction pathway and induces an interferon-gamma-responsive gene. This suggests that tyrosine phosphatases act both to repress the interferon-gamma signal transduction pathway in the absence of interferon-gamma and to downregulate the pathway after interferon-gamma induction.</p>\",\"PeriodicalId\":16268,\"journal\":{\"name\":\"Journal of interferon research\",\"volume\":\"14 6\",\"pages\":\"365-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/jir.1994.14.365\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of interferon research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/jir.1994.14.365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of interferon research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/jir.1994.14.365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

干扰素- γ诱导基因表达涉及通过磷酸化单个酪氨酸残基激活潜在的细胞质转录因子p91。这种磷酸化引发二聚化、核易位以及p91与诱导基因启动子中存在的干扰素- γ应答元件的结合。p91的磷酸化需要激活两种酪氨酸激酶JAK1和JAK2,这两种酪氨酸激酶在干扰素与其受体结合后不久在酪氨酸残基上被磷酸化。酪氨酸磷酸化在这一途径中的重要性促使我们研究蛋白酪氨酸磷酸酶在这一途径中的调节作用。我们发现,在缺乏干扰素- γ的情况下,用酪氨酸磷酸酶抑制剂处理细胞会导致干扰素- γ信号转导途径成分的快速有效激活,并诱导干扰素- γ反应基因。这表明酪氨酸磷酸酶在缺乏干扰素的情况下抑制干扰素- γ信号转导途径,并在干扰素- γ诱导后下调该途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid activation of the interferon-gamma signal transduction pathway by inhibitors of tyrosine phosphatases.

Induction of gene expression by interferon-gamma involves the activation of a latent cytoplasmic transcription factor, p91, by phosphorylation on a single tyrosyl residue. This phosphorylation triggers dimerization, nuclear translocation, and the binding of p91 to interferon-gamma response elements present in the promoters of induced genes. Phosphorylation of p91 requires the activation of two tyrosine kinases, JAK1 and JAK2, that themselves become phosphorylated on tyrosyl residues shortly after interferon-gamma binds to its receptor. The importance of tyrosine phosphorylation in this pathway prompted us to investigate the role of protein tyrosine phosphatases in the regulation of the pathway. We find that in the absence of interferon-gamma, treatment of cells with an inhibitor of tyrosine phosphatases causes a rapid and potent activation of the components of the interferon-gamma signal transduction pathway and induces an interferon-gamma-responsive gene. This suggests that tyrosine phosphatases act both to repress the interferon-gamma signal transduction pathway in the absence of interferon-gamma and to downregulate the pathway after interferon-gamma induction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interferon-alpha-induced biologic modifications in patients with chronic myelogenous leukemia. Interferon-stimulated response element and NF kappa B sites cooperate to regulate double-stranded RNA-induced transcription of the IP-10 gene. Rapid activation of the interferon-gamma signal transduction pathway by inhibitors of tyrosine phosphatases. Human indoleamine 2,3-dioxygenase inhibits Toxoplasma gondii growth in fibroblast cells. Defective transport of herpes simplex virus glycoprotein in interferon-treated cells: role of intracellular pH.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1