脑缺血后大鼠海马中间神经元的变化。形态学、功能和治疗研究。

F F Johansen
{"title":"脑缺血后大鼠海马中间神经元的变化。形态学、功能和治疗研究。","authors":"F F Johansen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This review describes the neuropathology and pathophysiology of interneurons in dorsal hippocampus of the adult rat subjected to transient global cerebral ischemia. The object is to verify if the interneurons die or survive after an ischemic insult, and study if ischemia changes GABA inhibition in the period preceding delayed CA1 pyramidal cell death. The findings are discussed from the point of the hypothesis that loss of GABA inhibition may result in excitatory hyperactivity (possibly epilepsy) and excitotoxic glutamate release. Thereby, early ischemic damage to interneurons may exacerbate the ischemic process resulting in the major and delayed CA1 cell death in hippocampus. Interneurons, located in dentate hilus, and a small number of interneurons located in the mossy fiber layer are selectively lost after ischemia. These interneurons contain somatostatin and neuropeptide Y, but the inhibitory or excitatory nature of them is unknown. However, counts of all hippocampal cells immunoreactive for glutamic acid decarboxylase showed that the GABA interneurons survive ischemia. It is therefore suggested that the vulnerable interneurons in hilus and the mossy fiber layer do not contain GABA. As the GABA interneurons, other hippocampal interneurons also survive ischemia. Among these, the CA1 and CA3 interneurons containing neuropeptide Y demonstrate permanently reduced immunoreactivity for neuropeptide Y, evident 1-2 days after ischemia. Another subpopulation transiently shows a decrease in immunoreactivity for parvalbumin approximately 4 days after ischemia. These results are in contrast to the finding that protein synthesis in hippocampal interneurons returns to preischemic levels 9 hours after ischemia. The integrity between excitation and inhibition in CA1 is unchanged in hippocampal slices taken from animals 1-2 days after ischemia. Furthermore, GABA can readily be released upon potassium stimulation in the period preceding CA1 pyramidal cell death. Binding to hippocampal benzodiazepine sites, however, declines prior to ischemic CA1 pyramidal cell death. It is demonstrated that administration of diazepam and GABA uptake inhibitors during this period offers postischemic neuron protection in CA1. There is no conclusive evidence of excitatory hyperactivity preceding ischemic CA1 pyramidal cell death. On the contrary, results from Chang et al. (1) suggest that ischemic loss of interneurons in the dentate hilus is associated with an increase in inhibition. However, it is suggested that GABA inhibition is insufficient to counterbalance the detrimental process during normal or even reduced postischemic excitation, since drugs believed to increase GABA inhibition reduce ischemic cell death. The early and permanent reduction in neuropeptide Y immunoreactivity may reflect a reduced capacity of these interneurons to release neuropeptide Y and thereby reduce presynaptic glutamate release.(ABSTRACT TRUNCATED AT 400 WORDS)</p>","PeriodicalId":75395,"journal":{"name":"Acta neurologica Scandinavica. Supplementum","volume":"150 ","pages":"1-32"},"PeriodicalIF":0.0000,"publicationDate":"1993-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interneurons in rat hippocampus after cerebral ischemia. Morphometric, functional, and therapeutic investigations.\",\"authors\":\"F F Johansen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This review describes the neuropathology and pathophysiology of interneurons in dorsal hippocampus of the adult rat subjected to transient global cerebral ischemia. The object is to verify if the interneurons die or survive after an ischemic insult, and study if ischemia changes GABA inhibition in the period preceding delayed CA1 pyramidal cell death. The findings are discussed from the point of the hypothesis that loss of GABA inhibition may result in excitatory hyperactivity (possibly epilepsy) and excitotoxic glutamate release. Thereby, early ischemic damage to interneurons may exacerbate the ischemic process resulting in the major and delayed CA1 cell death in hippocampus. Interneurons, located in dentate hilus, and a small number of interneurons located in the mossy fiber layer are selectively lost after ischemia. These interneurons contain somatostatin and neuropeptide Y, but the inhibitory or excitatory nature of them is unknown. However, counts of all hippocampal cells immunoreactive for glutamic acid decarboxylase showed that the GABA interneurons survive ischemia. It is therefore suggested that the vulnerable interneurons in hilus and the mossy fiber layer do not contain GABA. As the GABA interneurons, other hippocampal interneurons also survive ischemia. Among these, the CA1 and CA3 interneurons containing neuropeptide Y demonstrate permanently reduced immunoreactivity for neuropeptide Y, evident 1-2 days after ischemia. Another subpopulation transiently shows a decrease in immunoreactivity for parvalbumin approximately 4 days after ischemia. These results are in contrast to the finding that protein synthesis in hippocampal interneurons returns to preischemic levels 9 hours after ischemia. The integrity between excitation and inhibition in CA1 is unchanged in hippocampal slices taken from animals 1-2 days after ischemia. Furthermore, GABA can readily be released upon potassium stimulation in the period preceding CA1 pyramidal cell death. Binding to hippocampal benzodiazepine sites, however, declines prior to ischemic CA1 pyramidal cell death. It is demonstrated that administration of diazepam and GABA uptake inhibitors during this period offers postischemic neuron protection in CA1. There is no conclusive evidence of excitatory hyperactivity preceding ischemic CA1 pyramidal cell death. On the contrary, results from Chang et al. (1) suggest that ischemic loss of interneurons in the dentate hilus is associated with an increase in inhibition. However, it is suggested that GABA inhibition is insufficient to counterbalance the detrimental process during normal or even reduced postischemic excitation, since drugs believed to increase GABA inhibition reduce ischemic cell death. The early and permanent reduction in neuropeptide Y immunoreactivity may reflect a reduced capacity of these interneurons to release neuropeptide Y and thereby reduce presynaptic glutamate release.(ABSTRACT TRUNCATED AT 400 WORDS)</p>\",\"PeriodicalId\":75395,\"journal\":{\"name\":\"Acta neurologica Scandinavica. Supplementum\",\"volume\":\"150 \",\"pages\":\"1-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta neurologica Scandinavica. Supplementum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta neurologica Scandinavica. Supplementum","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了成年大鼠短暂性全脑缺血后海马背侧中间神经元的神经病理和病理生理。目的是验证缺血损伤后中间神经元是否死亡或存活,并研究缺血是否改变延迟CA1锥体细胞死亡前一段时间的GABA抑制。从GABA抑制丧失可能导致兴奋性亢进(可能是癫痫)和兴奋性毒性谷氨酸释放的假设的角度讨论了这些发现。因此,早期对中间神经元的缺血性损伤可能会加剧缺血过程,导致海马CA1细胞的主要和延迟性死亡。位于齿状门的中间神经元和少量位于苔藓纤维层的中间神经元在缺血后选择性丢失。这些中间神经元含有生长抑素和神经肽Y,但它们的抑制性或兴奋性尚不清楚。然而,所有海马细胞对谷氨酸脱羧酶免疫反应的计数表明,GABA中间神经元在缺血后存活。因此,门部和苔藓纤维层的脆弱中间神经元不含GABA。与GABA中间神经元一样,其他海马中间神经元也能在缺血中存活。其中,含有神经肽Y的CA1和CA3中间神经元对神经肽Y的免疫反应性永久性降低,在缺血后1-2天表现明显。另一个亚群在缺血后大约4天短暂地表现出对小白蛋白的免疫反应性下降。这些结果与缺血后9小时海马中间神经元的蛋白质合成恢复到缺血前水平的发现形成对比。在缺血后1-2天的海马切片中,CA1的兴奋和抑制之间的完整性没有改变。此外,在CA1锥体细胞死亡前的一段时间内,GABA在钾刺激下很容易释放。然而,在缺血性CA1锥体细胞死亡之前,与海马苯二氮卓类药物位点的结合会下降。研究表明,在此期间给予地西泮和GABA摄取抑制剂可在CA1中提供缺血后神经元保护。没有确凿的证据表明缺血性CA1锥体细胞死亡前存在兴奋性亢进。相反,Chang等人(1)的结果表明,齿状门中间神经元的缺血性损失与抑制的增加有关。然而,有人认为,GABA抑制不足以抵消正常或甚至减少的缺血后兴奋时的有害过程,因为据信增加GABA抑制的药物可减少缺血性细胞死亡。神经肽Y免疫反应性的早期和永久性降低可能反映了这些中间神经元释放神经肽Y的能力降低,从而减少了突触前谷氨酸的释放。(摘要删节为400字)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interneurons in rat hippocampus after cerebral ischemia. Morphometric, functional, and therapeutic investigations.

This review describes the neuropathology and pathophysiology of interneurons in dorsal hippocampus of the adult rat subjected to transient global cerebral ischemia. The object is to verify if the interneurons die or survive after an ischemic insult, and study if ischemia changes GABA inhibition in the period preceding delayed CA1 pyramidal cell death. The findings are discussed from the point of the hypothesis that loss of GABA inhibition may result in excitatory hyperactivity (possibly epilepsy) and excitotoxic glutamate release. Thereby, early ischemic damage to interneurons may exacerbate the ischemic process resulting in the major and delayed CA1 cell death in hippocampus. Interneurons, located in dentate hilus, and a small number of interneurons located in the mossy fiber layer are selectively lost after ischemia. These interneurons contain somatostatin and neuropeptide Y, but the inhibitory or excitatory nature of them is unknown. However, counts of all hippocampal cells immunoreactive for glutamic acid decarboxylase showed that the GABA interneurons survive ischemia. It is therefore suggested that the vulnerable interneurons in hilus and the mossy fiber layer do not contain GABA. As the GABA interneurons, other hippocampal interneurons also survive ischemia. Among these, the CA1 and CA3 interneurons containing neuropeptide Y demonstrate permanently reduced immunoreactivity for neuropeptide Y, evident 1-2 days after ischemia. Another subpopulation transiently shows a decrease in immunoreactivity for parvalbumin approximately 4 days after ischemia. These results are in contrast to the finding that protein synthesis in hippocampal interneurons returns to preischemic levels 9 hours after ischemia. The integrity between excitation and inhibition in CA1 is unchanged in hippocampal slices taken from animals 1-2 days after ischemia. Furthermore, GABA can readily be released upon potassium stimulation in the period preceding CA1 pyramidal cell death. Binding to hippocampal benzodiazepine sites, however, declines prior to ischemic CA1 pyramidal cell death. It is demonstrated that administration of diazepam and GABA uptake inhibitors during this period offers postischemic neuron protection in CA1. There is no conclusive evidence of excitatory hyperactivity preceding ischemic CA1 pyramidal cell death. On the contrary, results from Chang et al. (1) suggest that ischemic loss of interneurons in the dentate hilus is associated with an increase in inhibition. However, it is suggested that GABA inhibition is insufficient to counterbalance the detrimental process during normal or even reduced postischemic excitation, since drugs believed to increase GABA inhibition reduce ischemic cell death. The early and permanent reduction in neuropeptide Y immunoreactivity may reflect a reduced capacity of these interneurons to release neuropeptide Y and thereby reduce presynaptic glutamate release.(ABSTRACT TRUNCATED AT 400 WORDS)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proceedings of the Annual Meeting of the Norwegian Neurological Association. November 2010. Oslo, Norway. Selected articles from the Annual Meeting of the Norwegian Neurological Association, November 2009, Oslo, Norway. Selected articles from the Annual Meeting of the Norwegian Neurological Association, 26-30 November 2007, Oslo, Norway. Advances in the pathophysiology of status epilepticus. Childhood convulsive status epilepticus: epidemiology, management and outcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1