{"title":"干扰素tau的结构/功能研究:多个活性位点的证据。","authors":"C H Pontzer, T L Ott, F W Bazer, H M Johnson","doi":"10.1089/jir.1994.14.133","DOIUrl":null,"url":null,"abstract":"<p><p>A novel interferon (IFN), called IFN-tau (IFN-tau), has recently been discovered and has been shown to be a pregnancy recognition hormone. Unlike known IFNs, however, IFN-tau exhibits high antiviral and antiproliferative activity without cytotoxicity. The structural basis for IFN-tau function has been examined using six overlapping synthetic peptides corresponding to the entire ovine (Ov) IFN-tau sequence. Four peptides representing amino acids 1-37, 62-92, 119-150, and 139-172 inhibited OvIFN-tau antiviral activity in a dose-dependent manner. Polyclonal antipeptide antisera directed against the same four peptides blocked OvIFN-tau binding and antiviral activity, confirming the specificity of the peptide competitions. Because IFN-tau and IFN-alpha both interact with the type I IFN receptor, peptide inhibition of bovine and human IFN alpha activity was also determined. Of importance, only three peptides, OvIFN-tau (62-92), (119-150), and (139-172) inhibited IFN-alpha antiviral activity. The amino-terminal IFN-tau peptide, OvIFN-tau(1-37), was not inhibitory. These data suggest that the internal and carboxy-terminal reactive domains of IFN-tau may interact with a common type I IFN site on the receptor, while the amino terminus interacts with a site that elicits activity unique to OvIFN-tau. Finally, the antiproliferative activity of OvIFN-tau was localized primarily to the broad carboxy-terminal region, with OvIFN-tau(119-150) being the most effective inhibitor of OvIFN-tau-induced reduction of cell proliferation. Thus, multiple domains of IFN-tau have functional significance.(ABSTRACT TRUNCATED AT 250 WORDS)</p>","PeriodicalId":16268,"journal":{"name":"Journal of interferon research","volume":"14 3","pages":"133-41"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/jir.1994.14.133","citationCount":"36","resultStr":"{\"title\":\"Structure/function studies with interferon tau: evidence for multiple active sites.\",\"authors\":\"C H Pontzer, T L Ott, F W Bazer, H M Johnson\",\"doi\":\"10.1089/jir.1994.14.133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel interferon (IFN), called IFN-tau (IFN-tau), has recently been discovered and has been shown to be a pregnancy recognition hormone. Unlike known IFNs, however, IFN-tau exhibits high antiviral and antiproliferative activity without cytotoxicity. The structural basis for IFN-tau function has been examined using six overlapping synthetic peptides corresponding to the entire ovine (Ov) IFN-tau sequence. Four peptides representing amino acids 1-37, 62-92, 119-150, and 139-172 inhibited OvIFN-tau antiviral activity in a dose-dependent manner. Polyclonal antipeptide antisera directed against the same four peptides blocked OvIFN-tau binding and antiviral activity, confirming the specificity of the peptide competitions. Because IFN-tau and IFN-alpha both interact with the type I IFN receptor, peptide inhibition of bovine and human IFN alpha activity was also determined. Of importance, only three peptides, OvIFN-tau (62-92), (119-150), and (139-172) inhibited IFN-alpha antiviral activity. The amino-terminal IFN-tau peptide, OvIFN-tau(1-37), was not inhibitory. These data suggest that the internal and carboxy-terminal reactive domains of IFN-tau may interact with a common type I IFN site on the receptor, while the amino terminus interacts with a site that elicits activity unique to OvIFN-tau. Finally, the antiproliferative activity of OvIFN-tau was localized primarily to the broad carboxy-terminal region, with OvIFN-tau(119-150) being the most effective inhibitor of OvIFN-tau-induced reduction of cell proliferation. Thus, multiple domains of IFN-tau have functional significance.(ABSTRACT TRUNCATED AT 250 WORDS)</p>\",\"PeriodicalId\":16268,\"journal\":{\"name\":\"Journal of interferon research\",\"volume\":\"14 3\",\"pages\":\"133-41\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/jir.1994.14.133\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of interferon research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/jir.1994.14.133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of interferon research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/jir.1994.14.133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structure/function studies with interferon tau: evidence for multiple active sites.
A novel interferon (IFN), called IFN-tau (IFN-tau), has recently been discovered and has been shown to be a pregnancy recognition hormone. Unlike known IFNs, however, IFN-tau exhibits high antiviral and antiproliferative activity without cytotoxicity. The structural basis for IFN-tau function has been examined using six overlapping synthetic peptides corresponding to the entire ovine (Ov) IFN-tau sequence. Four peptides representing amino acids 1-37, 62-92, 119-150, and 139-172 inhibited OvIFN-tau antiviral activity in a dose-dependent manner. Polyclonal antipeptide antisera directed against the same four peptides blocked OvIFN-tau binding and antiviral activity, confirming the specificity of the peptide competitions. Because IFN-tau and IFN-alpha both interact with the type I IFN receptor, peptide inhibition of bovine and human IFN alpha activity was also determined. Of importance, only three peptides, OvIFN-tau (62-92), (119-150), and (139-172) inhibited IFN-alpha antiviral activity. The amino-terminal IFN-tau peptide, OvIFN-tau(1-37), was not inhibitory. These data suggest that the internal and carboxy-terminal reactive domains of IFN-tau may interact with a common type I IFN site on the receptor, while the amino terminus interacts with a site that elicits activity unique to OvIFN-tau. Finally, the antiproliferative activity of OvIFN-tau was localized primarily to the broad carboxy-terminal region, with OvIFN-tau(119-150) being the most effective inhibitor of OvIFN-tau-induced reduction of cell proliferation. Thus, multiple domains of IFN-tau have functional significance.(ABSTRACT TRUNCATED AT 250 WORDS)