微生物来源的脂质代谢抑制剂。

H Tomoda, S Omura
{"title":"微生物来源的脂质代谢抑制剂。","authors":"H Tomoda,&nbsp;S Omura","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Thiotetromycin is isolated from Streptomyces sp. OM-674 discovered in the course of the screening for antibacterial antibiotics. The antibiotic was found to be a specific inhibitor of type II fatty acid synthase. In order to search acyl-CoA synthetase inhibitors, a kind of yeast, Candida lipolytica, was utilized as test organism for the primary screening. Four structurally related compounds named triacsin were isolated from Streptomyces sp. SK-1894 as a specific inhibitor of acyl-CoA synthetase I of C. lipolytica. Further biochemical studies revealed that triacsins inhibit acyl-CoA synthetases from widely different sources. The inhibition is competitive with respect to long chain fatty acids. The common N-hydroxytriazene moiety of triacsins is essential for inhibition. To discover inhibitors of mevalonate biosynthesis, Vero cells were used as test organism for the screening. A beta-lactone 1233A(F-244) isolated from Scopulariopsis sp. F-244 was demonstrated to inhibit mevalonate biosynthesis with assays using cell and enzyme systems. Further studies demonstrated that the compound inhibits 3-hydroxy-3-methylglutaryl (HMG)-CoA synthase specifically and irreversibly. The geometry of the (2R, 3R)-beta-lactone ring in the structure is essential for specific inhibition against the enzyme.</p>","PeriodicalId":76691,"journal":{"name":"The Kitasato archives of experimental medicine","volume":"65 Suppl ","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipid metabolism inhibitors of microbial origin.\",\"authors\":\"H Tomoda,&nbsp;S Omura\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thiotetromycin is isolated from Streptomyces sp. OM-674 discovered in the course of the screening for antibacterial antibiotics. The antibiotic was found to be a specific inhibitor of type II fatty acid synthase. In order to search acyl-CoA synthetase inhibitors, a kind of yeast, Candida lipolytica, was utilized as test organism for the primary screening. Four structurally related compounds named triacsin were isolated from Streptomyces sp. SK-1894 as a specific inhibitor of acyl-CoA synthetase I of C. lipolytica. Further biochemical studies revealed that triacsins inhibit acyl-CoA synthetases from widely different sources. The inhibition is competitive with respect to long chain fatty acids. The common N-hydroxytriazene moiety of triacsins is essential for inhibition. To discover inhibitors of mevalonate biosynthesis, Vero cells were used as test organism for the screening. A beta-lactone 1233A(F-244) isolated from Scopulariopsis sp. F-244 was demonstrated to inhibit mevalonate biosynthesis with assays using cell and enzyme systems. Further studies demonstrated that the compound inhibits 3-hydroxy-3-methylglutaryl (HMG)-CoA synthase specifically and irreversibly. The geometry of the (2R, 3R)-beta-lactone ring in the structure is essential for specific inhibition against the enzyme.</p>\",\"PeriodicalId\":76691,\"journal\":{\"name\":\"The Kitasato archives of experimental medicine\",\"volume\":\"65 Suppl \",\"pages\":\"1-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Kitasato archives of experimental medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kitasato archives of experimental medicine","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

硫四霉素是从抗菌抗生素筛选过程中发现的链霉菌OM-674中分离得到的。发现该抗生素是II型脂肪酸合酶的特异性抑制剂。为了寻找酰基辅酶a合成酶抑制剂,以一种酵母菌脂溶假丝酵母为试验生物进行初步筛选。从Streptomyces sp. SK-1894中分离到4个结构相关的化合物,命名为triacsin,它们是C. lipolytica酰基辅酶a合成酶I的特异性抑制剂。进一步的生化研究表明,三甘辛素抑制来自广泛不同来源的酰基辅酶a合成酶。对长链脂肪酸的抑制是竞争性的。三嗪的n -羟基三氮烯部分对抑制作用至关重要。为了发现甲羟戊酸生物合成抑制剂,以Vero细胞为试验生物进行筛选。从Scopulariopsis sp. F-244中分离得到的β -内酯1233A(F-244)具有抑制甲羟戊酸生物合成的作用。进一步研究表明,该化合物对3-羟基-3-甲基戊二酰(HMG)-CoA合成酶具有特异性和不可逆的抑制作用。结构中(2R, 3R)- β -内酯环的几何形状对于对酶的特异性抑制至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lipid metabolism inhibitors of microbial origin.

Thiotetromycin is isolated from Streptomyces sp. OM-674 discovered in the course of the screening for antibacterial antibiotics. The antibiotic was found to be a specific inhibitor of type II fatty acid synthase. In order to search acyl-CoA synthetase inhibitors, a kind of yeast, Candida lipolytica, was utilized as test organism for the primary screening. Four structurally related compounds named triacsin were isolated from Streptomyces sp. SK-1894 as a specific inhibitor of acyl-CoA synthetase I of C. lipolytica. Further biochemical studies revealed that triacsins inhibit acyl-CoA synthetases from widely different sources. The inhibition is competitive with respect to long chain fatty acids. The common N-hydroxytriazene moiety of triacsins is essential for inhibition. To discover inhibitors of mevalonate biosynthesis, Vero cells were used as test organism for the screening. A beta-lactone 1233A(F-244) isolated from Scopulariopsis sp. F-244 was demonstrated to inhibit mevalonate biosynthesis with assays using cell and enzyme systems. Further studies demonstrated that the compound inhibits 3-hydroxy-3-methylglutaryl (HMG)-CoA synthase specifically and irreversibly. The geometry of the (2R, 3R)-beta-lactone ring in the structure is essential for specific inhibition against the enzyme.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Space microbiology--lethality, mutagenicity and cytological effects of terrestrial microorganisms by irradiation of cosmic proton under simulated space condition. The significance of the nest-building of the nine-spined stickleback, Pungitius pungitius. Genetic polymorphism of HLA-DR in the Japanese population. Possible role of metallothionein on the gastrointestinal absorption and distribution of cadmium. Development of Babesia gibsoni in the salivary glands of the tick, Haemaphysalis longicornis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1