W F Schmidt, R M Waters, A D Mitchell, J D Warthen, I L Honigberg, H Van Halbeek
{"title":"受体激动剂与相应的β 2-和β 1-肾上腺素能五肽序列的关联。","authors":"W F Schmidt, R M Waters, A D Mitchell, J D Warthen, I L Honigberg, H Van Halbeek","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Synthesized beta 1- and beta 2-pentapeptide sequences corresponding to published adrenoceptor transmembrane activation site subtypes were investigated in vitro for selectivity in association for drug ligands of known selectivity. Both nuclear magnetic resonance spectroscopy and molecular mechanics demonstrated that structural differences among the corresponding pentapeptide activation-site sequences can explain agonist selectivity. Results suggest the agonists bind across the activation site loop on the second transmembrane alpha-helix by dipole/dipole interactions between a ligand and the peptide. Since electrostatic interactions within the membrane may determine the rate of intercellular ion flux, agonist association across the activation site sequence could thereby decrease electrostatic resistance to positive ion flux into the cell. Interactions between the peptides and the ligands may provide insight into the structures and mechanisms involved in association of ligands for the identical sequences on the beta-adrenoreceptors.</p>","PeriodicalId":14204,"journal":{"name":"International journal of peptide and protein research","volume":"41 5","pages":"467-75"},"PeriodicalIF":0.0000,"publicationDate":"1993-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association of beta-agonists with corresponding beta 2- and beta 1-adrenergic pentapeptide sequences.\",\"authors\":\"W F Schmidt, R M Waters, A D Mitchell, J D Warthen, I L Honigberg, H Van Halbeek\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Synthesized beta 1- and beta 2-pentapeptide sequences corresponding to published adrenoceptor transmembrane activation site subtypes were investigated in vitro for selectivity in association for drug ligands of known selectivity. Both nuclear magnetic resonance spectroscopy and molecular mechanics demonstrated that structural differences among the corresponding pentapeptide activation-site sequences can explain agonist selectivity. Results suggest the agonists bind across the activation site loop on the second transmembrane alpha-helix by dipole/dipole interactions between a ligand and the peptide. Since electrostatic interactions within the membrane may determine the rate of intercellular ion flux, agonist association across the activation site sequence could thereby decrease electrostatic resistance to positive ion flux into the cell. Interactions between the peptides and the ligands may provide insight into the structures and mechanisms involved in association of ligands for the identical sequences on the beta-adrenoreceptors.</p>\",\"PeriodicalId\":14204,\"journal\":{\"name\":\"International journal of peptide and protein research\",\"volume\":\"41 5\",\"pages\":\"467-75\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of peptide and protein research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of peptide and protein research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Association of beta-agonists with corresponding beta 2- and beta 1-adrenergic pentapeptide sequences.
Synthesized beta 1- and beta 2-pentapeptide sequences corresponding to published adrenoceptor transmembrane activation site subtypes were investigated in vitro for selectivity in association for drug ligands of known selectivity. Both nuclear magnetic resonance spectroscopy and molecular mechanics demonstrated that structural differences among the corresponding pentapeptide activation-site sequences can explain agonist selectivity. Results suggest the agonists bind across the activation site loop on the second transmembrane alpha-helix by dipole/dipole interactions between a ligand and the peptide. Since electrostatic interactions within the membrane may determine the rate of intercellular ion flux, agonist association across the activation site sequence could thereby decrease electrostatic resistance to positive ion flux into the cell. Interactions between the peptides and the ligands may provide insight into the structures and mechanisms involved in association of ligands for the identical sequences on the beta-adrenoreceptors.