{"title":"烟曲霉1,3-葡聚糖合成酶的研究。","authors":"A Beauvais, R Drake, K Ng, M Diaquin, J P Latgé","doi":"10.1099/00221287-139-12-3071","DOIUrl":null,"url":null,"abstract":"<p><p>1,3-beta-Glucan synthase activity has been detected in a membrane fraction extracted from the mycelium of the filamentous fungus Aspergillus fumigatus. The enzyme was solubilized by CHAPS and stabilized by filtration on a Bio-gel P30 column. Highest activity was obtained in the early exponential phase of growth. Four factors--GTP, NaF, sucrose and EDTA--added during the extraction procedure, were essential for optimal 1,3-beta-glucan synthase activity. The soluble enzyme preparation was photolabelled with 5-azido-[32P]UDP-glucose and 5-125IASA-UDP-glucose which bind covalently to the enzyme after UV irradiation. These UDP-glucose substrate analogues were competitive inhibitors of the enzyme with a Ki of 1.42 mM and 0.3 mM for 5-azido-UDP-glucose and 5-ASA-UDP-glucose, respectively (Km for UDP-glucose = 1.9 mM). Potential UDP-glucose-binding polypeptides were identified with molecular masses of 31, 50 and 115 kDa.</p>","PeriodicalId":15884,"journal":{"name":"Journal of general microbiology","volume":"139 12","pages":"3071-8"},"PeriodicalIF":0.0000,"publicationDate":"1993-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Characterization of the 1,3-beta-glucan synthase of Aspergillus fumigatus.\",\"authors\":\"A Beauvais, R Drake, K Ng, M Diaquin, J P Latgé\",\"doi\":\"10.1099/00221287-139-12-3071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>1,3-beta-Glucan synthase activity has been detected in a membrane fraction extracted from the mycelium of the filamentous fungus Aspergillus fumigatus. The enzyme was solubilized by CHAPS and stabilized by filtration on a Bio-gel P30 column. Highest activity was obtained in the early exponential phase of growth. Four factors--GTP, NaF, sucrose and EDTA--added during the extraction procedure, were essential for optimal 1,3-beta-glucan synthase activity. The soluble enzyme preparation was photolabelled with 5-azido-[32P]UDP-glucose and 5-125IASA-UDP-glucose which bind covalently to the enzyme after UV irradiation. These UDP-glucose substrate analogues were competitive inhibitors of the enzyme with a Ki of 1.42 mM and 0.3 mM for 5-azido-UDP-glucose and 5-ASA-UDP-glucose, respectively (Km for UDP-glucose = 1.9 mM). Potential UDP-glucose-binding polypeptides were identified with molecular masses of 31, 50 and 115 kDa.</p>\",\"PeriodicalId\":15884,\"journal\":{\"name\":\"Journal of general microbiology\",\"volume\":\"139 12\",\"pages\":\"3071-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of general microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1099/00221287-139-12-3071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of general microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1099/00221287-139-12-3071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization of the 1,3-beta-glucan synthase of Aspergillus fumigatus.
1,3-beta-Glucan synthase activity has been detected in a membrane fraction extracted from the mycelium of the filamentous fungus Aspergillus fumigatus. The enzyme was solubilized by CHAPS and stabilized by filtration on a Bio-gel P30 column. Highest activity was obtained in the early exponential phase of growth. Four factors--GTP, NaF, sucrose and EDTA--added during the extraction procedure, were essential for optimal 1,3-beta-glucan synthase activity. The soluble enzyme preparation was photolabelled with 5-azido-[32P]UDP-glucose and 5-125IASA-UDP-glucose which bind covalently to the enzyme after UV irradiation. These UDP-glucose substrate analogues were competitive inhibitors of the enzyme with a Ki of 1.42 mM and 0.3 mM for 5-azido-UDP-glucose and 5-ASA-UDP-glucose, respectively (Km for UDP-glucose = 1.9 mM). Potential UDP-glucose-binding polypeptides were identified with molecular masses of 31, 50 and 115 kDa.