脊椎动物胚胎对Wnt信号的反应可能涉及细胞粘附和细胞运动的改变。

R T Moon, A DeMarais, D J Olson
{"title":"脊椎动物胚胎对Wnt信号的反应可能涉及细胞粘附和细胞运动的改变。","authors":"R T Moon,&nbsp;A DeMarais,&nbsp;D J Olson","doi":"10.1242/jcs.1993.supplement_17.26","DOIUrl":null,"url":null,"abstract":"<p><p>Wnt genes encode secreted glycoproteins, and, because of their homology with the Drosophila segment polarity gene wingless, are likely to play important roles as modulators of local intercellular signalling during embryonic development. Although little is known of the mechanisms by which Wnts signal in an autocrine or paracrine manner, it is increasingly clear that cells can respond rapidly to Wnt signals in the absence of transcription, and that these responses may include changes in cell adhesion and cell movement. We review recent evidence from studies on Xenopus laevis and other systems, which demonstrate that (1) a subset of Wnts modulate gap junctional permeability, which may be a reflection of changes in cadherin-mediated cell adhesion, (2) embryos express beta-catenin and plakoglobin, which are homologs of the armadillo gene products, known to be involved in the wingless signalling pathway, and known to be found at cell junctions, and (3) overexpression of specific Wnts in Xenopus embryos leads to clear changes in cell behavior and movement.</p>","PeriodicalId":77195,"journal":{"name":"Journal of cell science. Supplement","volume":"17 ","pages":"183-8"},"PeriodicalIF":0.0000,"publicationDate":"1993-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1242/jcs.1993.supplement_17.26","citationCount":"41","resultStr":"{\"title\":\"Responses to Wnt signals in vertebrate embryos may involve changes in cell adhesion and cell movement.\",\"authors\":\"R T Moon,&nbsp;A DeMarais,&nbsp;D J Olson\",\"doi\":\"10.1242/jcs.1993.supplement_17.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wnt genes encode secreted glycoproteins, and, because of their homology with the Drosophila segment polarity gene wingless, are likely to play important roles as modulators of local intercellular signalling during embryonic development. Although little is known of the mechanisms by which Wnts signal in an autocrine or paracrine manner, it is increasingly clear that cells can respond rapidly to Wnt signals in the absence of transcription, and that these responses may include changes in cell adhesion and cell movement. We review recent evidence from studies on Xenopus laevis and other systems, which demonstrate that (1) a subset of Wnts modulate gap junctional permeability, which may be a reflection of changes in cadherin-mediated cell adhesion, (2) embryos express beta-catenin and plakoglobin, which are homologs of the armadillo gene products, known to be involved in the wingless signalling pathway, and known to be found at cell junctions, and (3) overexpression of specific Wnts in Xenopus embryos leads to clear changes in cell behavior and movement.</p>\",\"PeriodicalId\":77195,\"journal\":{\"name\":\"Journal of cell science. Supplement\",\"volume\":\"17 \",\"pages\":\"183-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1242/jcs.1993.supplement_17.26\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cell science. Supplement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1242/jcs.1993.supplement_17.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science. Supplement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1242/jcs.1993.supplement_17.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

Wnt基因编码分泌的糖蛋白,并且由于它们与果蝇无翅的片段极性基因同源,可能在胚胎发育过程中作为局部细胞间信号传导的调节剂发挥重要作用。尽管对Wnt以自分泌或旁分泌方式发出信号的机制知之甚少,但越来越清楚的是,细胞可以在没有转录的情况下对Wnt信号做出快速反应,这些反应可能包括细胞粘附和细胞运动的变化。我们回顾了非洲爪蟾和其他系统的最新研究证据,这些证据表明:(1)wnt的一个亚群调节间隙连接通透性,这可能是钙粘蛋白介导的细胞粘附变化的反映;(2)胚胎表达β -catenin和血小板红蛋白,它们是犰狳基因产物的同源物,已知参与无翼信号通路,并且已知在细胞连接处发现。(3)非洲爪蟾胚胎中特异性wnt的过表达导致细胞行为和运动发生明显变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Responses to Wnt signals in vertebrate embryos may involve changes in cell adhesion and cell movement.

Wnt genes encode secreted glycoproteins, and, because of their homology with the Drosophila segment polarity gene wingless, are likely to play important roles as modulators of local intercellular signalling during embryonic development. Although little is known of the mechanisms by which Wnts signal in an autocrine or paracrine manner, it is increasingly clear that cells can respond rapidly to Wnt signals in the absence of transcription, and that these responses may include changes in cell adhesion and cell movement. We review recent evidence from studies on Xenopus laevis and other systems, which demonstrate that (1) a subset of Wnts modulate gap junctional permeability, which may be a reflection of changes in cadherin-mediated cell adhesion, (2) embryos express beta-catenin and plakoglobin, which are homologs of the armadillo gene products, known to be involved in the wingless signalling pathway, and known to be found at cell junctions, and (3) overexpression of specific Wnts in Xenopus embryos leads to clear changes in cell behavior and movement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Studies of DNA methylation in animals. Characterization of the execution phase of apoptosis in vitro using extracts from condemned-phase cells. Analysis of the temporal program of replication initiation in yeast chromosomes. On the structure of replication and transcription factories. Stepwise assembly of initiation complexes at budding yeast replication origins during the cell cycle.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1