前列腺素F2 α酯前药及受体选择性前列腺素类似物降压作用的研究。

D F Woodward, M F Chan, J A Burke, A Cheng-Bennett, G Chen, C E Fairbairn, T Gac, M E Garst, C Gluchowski, L J Kaplan
{"title":"前列腺素F2 α酯前药及受体选择性前列腺素类似物降压作用的研究。","authors":"D F Woodward,&nbsp;M F Chan,&nbsp;J A Burke,&nbsp;A Cheng-Bennett,&nbsp;G Chen,&nbsp;C E Fairbairn,&nbsp;T Gac,&nbsp;M E Garst,&nbsp;C Gluchowski,&nbsp;L J Kaplan","doi":"10.1089/jop.1994.10.177","DOIUrl":null,"url":null,"abstract":"<p><p>The use of natural prostaglandins (PG), such as PGD2, PGE2, PGF2 alpha, and PGI2, for treating glaucoma is limited by their ocular side effects. One approach to achieve the required separation of ocular hypotensive activity from side effects is to employ ester prodrugs. From a novel series of 11- and 15-mono and 11,15-diacyl esters of PGF2 alpha we identified prodrugs where PGF2 alpha formation rates in the iris-ciliary body exceeded those in the conjunctiva, sclera, and corneal endothelium. Compared to PGF2 alpha-1-isopropyl ester the ocular tissue hydrolysis rates of the 11-monopivaloyl, the 11,15-dipivaloyl ester and the 1,11-lactone were up to 1000 fold less. Despite this large disparity in hydrolysis rates, the pivaloyl esters and the 1,11-lactone were potent ocular hypotensives in our animal models. In studying prostaglandin analogs, we found that a diverse variety of prostanoid receptor selective agonists lowered intraocular pressure in dogs and/or monkeys. These included DP-, EP1-, EP2-, EP3-, and FP-receptor selective compounds. These findings were surprising and prompted us to re-examine the receptor selectivity of these agonists by radioligand binding studies. Using radiolabelled PGE2, 17-phenyl PGF2 alpha, and sulprostone we were able to confirm the selectivity of the agonists currently used for receptor characterization directly by radioligand binding competition studies. It appears that multiple prostanoid receptor subtypes may be involved in regulating intraocular pressure.</p>","PeriodicalId":16638,"journal":{"name":"Journal of ocular pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/jop.1994.10.177","citationCount":"26","resultStr":"{\"title\":\"Studies on the ocular hypotensive effects of prostaglandin F2 alpha ester prodrugs and receptor selective prostaglandin analogs.\",\"authors\":\"D F Woodward,&nbsp;M F Chan,&nbsp;J A Burke,&nbsp;A Cheng-Bennett,&nbsp;G Chen,&nbsp;C E Fairbairn,&nbsp;T Gac,&nbsp;M E Garst,&nbsp;C Gluchowski,&nbsp;L J Kaplan\",\"doi\":\"10.1089/jop.1994.10.177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of natural prostaglandins (PG), such as PGD2, PGE2, PGF2 alpha, and PGI2, for treating glaucoma is limited by their ocular side effects. One approach to achieve the required separation of ocular hypotensive activity from side effects is to employ ester prodrugs. From a novel series of 11- and 15-mono and 11,15-diacyl esters of PGF2 alpha we identified prodrugs where PGF2 alpha formation rates in the iris-ciliary body exceeded those in the conjunctiva, sclera, and corneal endothelium. Compared to PGF2 alpha-1-isopropyl ester the ocular tissue hydrolysis rates of the 11-monopivaloyl, the 11,15-dipivaloyl ester and the 1,11-lactone were up to 1000 fold less. Despite this large disparity in hydrolysis rates, the pivaloyl esters and the 1,11-lactone were potent ocular hypotensives in our animal models. In studying prostaglandin analogs, we found that a diverse variety of prostanoid receptor selective agonists lowered intraocular pressure in dogs and/or monkeys. These included DP-, EP1-, EP2-, EP3-, and FP-receptor selective compounds. These findings were surprising and prompted us to re-examine the receptor selectivity of these agonists by radioligand binding studies. Using radiolabelled PGE2, 17-phenyl PGF2 alpha, and sulprostone we were able to confirm the selectivity of the agonists currently used for receptor characterization directly by radioligand binding competition studies. It appears that multiple prostanoid receptor subtypes may be involved in regulating intraocular pressure.</p>\",\"PeriodicalId\":16638,\"journal\":{\"name\":\"Journal of ocular pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/jop.1994.10.177\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ocular pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/jop.1994.10.177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ocular pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/jop.1994.10.177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

天然前列腺素(PG),如PGD2、PGE2、PGF2 α和PGI2,用于治疗青光眼受到其眼部副作用的限制。一种方法来实现所需的分离眼压活性和副作用是使用酯前药。从一系列新的PGF2 α - 11-和15-单酰基酯和11,15-二酰基酯中,我们确定了在虹膜-睫状体中PGF2 α形成率超过结膜、巩膜和角膜内皮的前药。与PGF2 α -1-异丙酯相比,11-单戊酯、11,15-二戊酯和1,11-内酯的眼组织水解率降低了1000倍。尽管水解率存在巨大差异,但在我们的动物模型中,戊酰酯和1,11-内酯是有效的降眼压药。在研究前列腺素类似物时,我们发现多种前列腺素受体选择性激动剂可以降低狗和/或猴子的眼压。这些包括DP-, EP1-, EP2-, EP3-和fp受体选择性化合物。这些发现令人惊讶,并促使我们通过放射性配体结合研究重新检查这些激动剂的受体选择性。使用放射性标记的PGE2, 17-苯基PGF2 α和磺胺酮,我们能够通过放射性配体结合竞争研究直接确认目前用于受体表征的激动剂的选择性。多种前列腺素受体亚型可能参与调节眼压。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Studies on the ocular hypotensive effects of prostaglandin F2 alpha ester prodrugs and receptor selective prostaglandin analogs.

The use of natural prostaglandins (PG), such as PGD2, PGE2, PGF2 alpha, and PGI2, for treating glaucoma is limited by their ocular side effects. One approach to achieve the required separation of ocular hypotensive activity from side effects is to employ ester prodrugs. From a novel series of 11- and 15-mono and 11,15-diacyl esters of PGF2 alpha we identified prodrugs where PGF2 alpha formation rates in the iris-ciliary body exceeded those in the conjunctiva, sclera, and corneal endothelium. Compared to PGF2 alpha-1-isopropyl ester the ocular tissue hydrolysis rates of the 11-monopivaloyl, the 11,15-dipivaloyl ester and the 1,11-lactone were up to 1000 fold less. Despite this large disparity in hydrolysis rates, the pivaloyl esters and the 1,11-lactone were potent ocular hypotensives in our animal models. In studying prostaglandin analogs, we found that a diverse variety of prostanoid receptor selective agonists lowered intraocular pressure in dogs and/or monkeys. These included DP-, EP1-, EP2-, EP3-, and FP-receptor selective compounds. These findings were surprising and prompted us to re-examine the receptor selectivity of these agonists by radioligand binding studies. Using radiolabelled PGE2, 17-phenyl PGF2 alpha, and sulprostone we were able to confirm the selectivity of the agonists currently used for receptor characterization directly by radioligand binding competition studies. It appears that multiple prostanoid receptor subtypes may be involved in regulating intraocular pressure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The effect of pilocarpine on ocular levobunolol absorption from ophthalmic solutions. Prejunctional alpha 2-adrenoceptors and adenylyl cyclase regulation in the rabbit iris-ciliary body. Inhibition of cell adhesion to lens capsule by LCM 1910, an RGD-derived peptide. Ocular pharmacokinetics of orally administered azithromycin in rabbits. The presence of L-carnitine in ocular tissues of the rabbit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1