{"title":"骆驼红细胞中钾的体积依赖性运输。","authors":"N S Gharaibeh, N M Rawashdeh","doi":"10.3109/09687689309150257","DOIUrl":null,"url":null,"abstract":"<p><p>In this study the volume-dependent, ouabain-resistant K+ influx and efflux in camel red blood cells were measured with the tracer 86Rb+. The results showed that the camel erythrocytes do not have the Na(+)-K+ cotransport. The cell swelling increases a ouabain-resistant K+ influx and shrinkage decreases it nearly two-fold. The swelling-stimulated K+ influx and efflux were chloride dependent. The anion dependence of K+ influx in swollen cells was as follows: Br- > Cl- > NO3. The pH-dependent curve for swelling-stimulated potassium influx, and the active K+ influx in camel erythrocytes were determined. The findings indicate that camel erythrocytes' potassium transport system has many similarities to other mammalian species.</p>","PeriodicalId":18448,"journal":{"name":"Membrane biochemistry","volume":"10 2","pages":"99-106"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/09687689309150257","citationCount":"2","resultStr":"{\"title\":\"Volume-dependent potassium transport in camel red blood cells.\",\"authors\":\"N S Gharaibeh, N M Rawashdeh\",\"doi\":\"10.3109/09687689309150257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study the volume-dependent, ouabain-resistant K+ influx and efflux in camel red blood cells were measured with the tracer 86Rb+. The results showed that the camel erythrocytes do not have the Na(+)-K+ cotransport. The cell swelling increases a ouabain-resistant K+ influx and shrinkage decreases it nearly two-fold. The swelling-stimulated K+ influx and efflux were chloride dependent. The anion dependence of K+ influx in swollen cells was as follows: Br- > Cl- > NO3. The pH-dependent curve for swelling-stimulated potassium influx, and the active K+ influx in camel erythrocytes were determined. The findings indicate that camel erythrocytes' potassium transport system has many similarities to other mammalian species.</p>\",\"PeriodicalId\":18448,\"journal\":{\"name\":\"Membrane biochemistry\",\"volume\":\"10 2\",\"pages\":\"99-106\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/09687689309150257\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membrane biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/09687689309150257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membrane biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/09687689309150257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Volume-dependent potassium transport in camel red blood cells.
In this study the volume-dependent, ouabain-resistant K+ influx and efflux in camel red blood cells were measured with the tracer 86Rb+. The results showed that the camel erythrocytes do not have the Na(+)-K+ cotransport. The cell swelling increases a ouabain-resistant K+ influx and shrinkage decreases it nearly two-fold. The swelling-stimulated K+ influx and efflux were chloride dependent. The anion dependence of K+ influx in swollen cells was as follows: Br- > Cl- > NO3. The pH-dependent curve for swelling-stimulated potassium influx, and the active K+ influx in camel erythrocytes were determined. The findings indicate that camel erythrocytes' potassium transport system has many similarities to other mammalian species.