受体介导的信号通路通过心肌细胞膜磷脂的水解作用。

Cardioscience Pub Date : 1993-09-01
J M Lamers, H W De Jonge, V Panagia, H A Van Heugten
{"title":"受体介导的信号通路通过心肌细胞膜磷脂的水解作用。","authors":"J M Lamers,&nbsp;H W De Jonge,&nbsp;V Panagia,&nbsp;H A Van Heugten","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The aim is to summarize briefly the evidence for the existence and possible functions of receptor-mediated activity of phospholipases C and D in the myocardium. Muscarinic, alpha 1-adrenergic, angiotensin II, endothelin-1, thrombin, adenine nucleotide and opioid peptide receptors are all linked through GTP-binding proteins to phospholipase C which hydrolyses phosphatidylinositol 4,5-bisphosphate (PIP2) in the myocardium. Events that are not linked to receptors, such as mechanical loading (stretching) of cardiomyocytes, can also activate phospholipase C. The high capacity for resynthesis of PIP2 maintains the pool of PIP2, even during maximal activation of phospholipase C. Activation of phospholipase C by endothelin-1, alpha 1-adrenoceptor and angiotensin II, is subject to different rates of homologous desensitization. Protein kinase C is probably not involved in the desensitization of the response to endothelin-1. One of the products of the hydrolysis of PIP2, inositol 1,4,5-trisphosphate (IP3), releases Ca2+ from the sarcoplasmic reticulum. This intracellular response seems to be causally related to positive inotropy. The phosphorylated product of IP3, inositol 1,3,4,5-tetrakisphosphate (IP4), is believed to play a role in the handling of intracellular Ca2+, as well as in the inotropic response; however, its formation is controversial. At present the oscillations in the level of intracellular Ca2+ underlying, for example, the positive inotropy induced by alpha 1-adrenoceptors or endothelin are not clearly identified. The other product of phospholipase C, 1,2-diacylglycerol, activates Ca(2+)-dependent protein kinase C and potentially controls a wide array of cellular functions such as ion transport, myofibrillar Ca2+ sensitivity, \"cross-talk\" between phospholipases C and D, gene expression, protein synthesis and hypertrophic cell growth. Alterations in the fatty acid composition, particularly the polyunsaturated fatty acids, modify the phosphoinositide response induced by hormones. Cultured cardiomyocytes, incubated in sera containing the fatty acids 18:2n-6 or 20:5n-3, but not 18:0 and 18:1n-9, show a decrease in the phospholipase C responses mediated by alpha 1-adrenoceptors. The fatty acid composition of myocardial phosphatidyl inositol 4-monophosphate (PIP) and PIP2 differs from that of phosphatidylinositol, which indicates that phosphatidylinositol kinases have a certain substrate specificity or have access to localized phosphatidylinositol molecules. The estimation of the level of stimulated 1,2-diacylglycerol is complicated by the contribution of the activity of receptor-mediated phospholipase D. The identification of the molecular species of 1,2-diacylglycerol is crucial in establishing the roles and the sources of 1,2-diacylglycerol. The fatty acids covalently bound in the membrane phospholipids may also influence phospholipases C and D.(ABSTRACT TRUNCATED AT 400 WORDS)</p>","PeriodicalId":9629,"journal":{"name":"Cardioscience","volume":"4 3","pages":"121-31"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Receptor-mediated signalling pathways acting through hydrolysis of membrane phospholipids in cardiomyocytes.\",\"authors\":\"J M Lamers,&nbsp;H W De Jonge,&nbsp;V Panagia,&nbsp;H A Van Heugten\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim is to summarize briefly the evidence for the existence and possible functions of receptor-mediated activity of phospholipases C and D in the myocardium. Muscarinic, alpha 1-adrenergic, angiotensin II, endothelin-1, thrombin, adenine nucleotide and opioid peptide receptors are all linked through GTP-binding proteins to phospholipase C which hydrolyses phosphatidylinositol 4,5-bisphosphate (PIP2) in the myocardium. Events that are not linked to receptors, such as mechanical loading (stretching) of cardiomyocytes, can also activate phospholipase C. The high capacity for resynthesis of PIP2 maintains the pool of PIP2, even during maximal activation of phospholipase C. Activation of phospholipase C by endothelin-1, alpha 1-adrenoceptor and angiotensin II, is subject to different rates of homologous desensitization. Protein kinase C is probably not involved in the desensitization of the response to endothelin-1. One of the products of the hydrolysis of PIP2, inositol 1,4,5-trisphosphate (IP3), releases Ca2+ from the sarcoplasmic reticulum. This intracellular response seems to be causally related to positive inotropy. The phosphorylated product of IP3, inositol 1,3,4,5-tetrakisphosphate (IP4), is believed to play a role in the handling of intracellular Ca2+, as well as in the inotropic response; however, its formation is controversial. At present the oscillations in the level of intracellular Ca2+ underlying, for example, the positive inotropy induced by alpha 1-adrenoceptors or endothelin are not clearly identified. The other product of phospholipase C, 1,2-diacylglycerol, activates Ca(2+)-dependent protein kinase C and potentially controls a wide array of cellular functions such as ion transport, myofibrillar Ca2+ sensitivity, \\\"cross-talk\\\" between phospholipases C and D, gene expression, protein synthesis and hypertrophic cell growth. Alterations in the fatty acid composition, particularly the polyunsaturated fatty acids, modify the phosphoinositide response induced by hormones. Cultured cardiomyocytes, incubated in sera containing the fatty acids 18:2n-6 or 20:5n-3, but not 18:0 and 18:1n-9, show a decrease in the phospholipase C responses mediated by alpha 1-adrenoceptors. The fatty acid composition of myocardial phosphatidyl inositol 4-monophosphate (PIP) and PIP2 differs from that of phosphatidylinositol, which indicates that phosphatidylinositol kinases have a certain substrate specificity or have access to localized phosphatidylinositol molecules. The estimation of the level of stimulated 1,2-diacylglycerol is complicated by the contribution of the activity of receptor-mediated phospholipase D. The identification of the molecular species of 1,2-diacylglycerol is crucial in establishing the roles and the sources of 1,2-diacylglycerol. The fatty acids covalently bound in the membrane phospholipids may also influence phospholipases C and D.(ABSTRACT TRUNCATED AT 400 WORDS)</p>\",\"PeriodicalId\":9629,\"journal\":{\"name\":\"Cardioscience\",\"volume\":\"4 3\",\"pages\":\"121-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardioscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardioscience","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是简要总结心肌中磷脂酶C和D的受体介导活性的存在及其可能的功能的证据。毒蕈碱、α 1-肾上腺素能、血管紧张素II、内皮素-1、凝血酶、腺嘌呤核苷酸和阿片肽受体都通过gtp结合蛋白与磷脂酶C连接,磷脂酶C在心肌中水解磷脂酰肌醇4,5-二磷酸(PIP2)。与受体无关的事件,如心肌细胞的机械负荷(拉伸),也可以激活磷脂酶C。PIP2的高再合成能力维持了PIP2的库,即使在磷脂酶C的最大激活期间。内皮素-1、α -1肾上腺素受体和血管紧张素II激活磷脂酶C,受到不同速率的同源脱敏。蛋白激酶C可能不参与对内皮素-1反应的脱敏。PIP2水解的产物之一,肌醇1,4,5-三磷酸(IP3),从肌浆网释放Ca2+。这种细胞内反应似乎与正性肌力有因果关系。IP3的磷酸化产物,肌醇1,3,4,5-四磷酸肌醇(IP4),被认为在处理细胞内Ca2+以及收缩性反应中发挥作用;然而,它的形成是有争议的。目前,细胞内Ca2+水平的波动,例如,由α - 1肾上腺素受体或内皮素诱导的正性肌力变化尚未明确。磷脂酶C的另一种产物,1,2-二酰基甘油,激活Ca(2+)依赖性蛋白激酶C,并可能控制一系列细胞功能,如离子转运、肌纤维Ca2+敏感性、磷脂酶C和D之间的“串音”、基因表达、蛋白质合成和肥厚细胞生长。脂肪酸组成的改变,特别是多不饱和脂肪酸,改变了激素诱导的磷酸肌肽反应。培养的心肌细胞,在含有18:2n-6或20:5n-3脂肪酸,而不是18:0和18:1n-9脂肪酸的血清中孵育,显示α - 1肾上腺素受体介导的磷脂酶C反应减少。心肌磷脂酰肌醇4-单磷酸(PIP)和PIP2的脂肪酸组成与磷脂酰肌醇不同,这表明磷脂酰肌醇激酶具有一定的底物特异性,或者可以进入局部的磷脂酰肌醇分子。受刺激的1,2-二酰基甘油水平的估计由于受体介导的磷脂酶d的活性的贡献而变得复杂。鉴定1,2-二酰基甘油的分子种类对于确定1,2-二酰基甘油的作用和来源至关重要。共价结合在膜磷脂中的脂肪酸也可能影响磷脂酶C和d。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Receptor-mediated signalling pathways acting through hydrolysis of membrane phospholipids in cardiomyocytes.

The aim is to summarize briefly the evidence for the existence and possible functions of receptor-mediated activity of phospholipases C and D in the myocardium. Muscarinic, alpha 1-adrenergic, angiotensin II, endothelin-1, thrombin, adenine nucleotide and opioid peptide receptors are all linked through GTP-binding proteins to phospholipase C which hydrolyses phosphatidylinositol 4,5-bisphosphate (PIP2) in the myocardium. Events that are not linked to receptors, such as mechanical loading (stretching) of cardiomyocytes, can also activate phospholipase C. The high capacity for resynthesis of PIP2 maintains the pool of PIP2, even during maximal activation of phospholipase C. Activation of phospholipase C by endothelin-1, alpha 1-adrenoceptor and angiotensin II, is subject to different rates of homologous desensitization. Protein kinase C is probably not involved in the desensitization of the response to endothelin-1. One of the products of the hydrolysis of PIP2, inositol 1,4,5-trisphosphate (IP3), releases Ca2+ from the sarcoplasmic reticulum. This intracellular response seems to be causally related to positive inotropy. The phosphorylated product of IP3, inositol 1,3,4,5-tetrakisphosphate (IP4), is believed to play a role in the handling of intracellular Ca2+, as well as in the inotropic response; however, its formation is controversial. At present the oscillations in the level of intracellular Ca2+ underlying, for example, the positive inotropy induced by alpha 1-adrenoceptors or endothelin are not clearly identified. The other product of phospholipase C, 1,2-diacylglycerol, activates Ca(2+)-dependent protein kinase C and potentially controls a wide array of cellular functions such as ion transport, myofibrillar Ca2+ sensitivity, "cross-talk" between phospholipases C and D, gene expression, protein synthesis and hypertrophic cell growth. Alterations in the fatty acid composition, particularly the polyunsaturated fatty acids, modify the phosphoinositide response induced by hormones. Cultured cardiomyocytes, incubated in sera containing the fatty acids 18:2n-6 or 20:5n-3, but not 18:0 and 18:1n-9, show a decrease in the phospholipase C responses mediated by alpha 1-adrenoceptors. The fatty acid composition of myocardial phosphatidyl inositol 4-monophosphate (PIP) and PIP2 differs from that of phosphatidylinositol, which indicates that phosphatidylinositol kinases have a certain substrate specificity or have access to localized phosphatidylinositol molecules. The estimation of the level of stimulated 1,2-diacylglycerol is complicated by the contribution of the activity of receptor-mediated phospholipase D. The identification of the molecular species of 1,2-diacylglycerol is crucial in establishing the roles and the sources of 1,2-diacylglycerol. The fatty acids covalently bound in the membrane phospholipids may also influence phospholipases C and D.(ABSTRACT TRUNCATED AT 400 WORDS)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cellular basis of ventricular remodeling after myocardial infarction in rats. Incorporation of cholesterol oxidation products into cell lipids and their influence on the proliferation of cultured cardiomyocytes. Assessment of subrenal banding of the abdominal aorta as a method of inducing cardiac hypertrophy in the guinea pig. The effects of distension of the stomach and the descending colon on phasic coronary blood flow in the anesthetized pig. The functional and metabolic responses of the heart to catecholamines are attenuated in diabetic rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1