LHRH类似物的构象-函数关系。2LHRH肽激动剂和拮抗剂的构象。

G V Nikiforovich, G R Marshall
{"title":"LHRH类似物的构象-函数关系。2LHRH肽激动剂和拮抗剂的构象。","authors":"G V Nikiforovich,&nbsp;G R Marshall","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Systematic energy calculations were performed for a series of LHRH analogs including five agonists with substitutions of D- or N-Me-amino acid residues in positions 4, 6 and 7, and five antagonists with substitutions of D-, N-Me- or alpha-Me-amino acid residues in positions 1, 2, 3, 6, 7 and 10, as well as a bicyclic LHRH antagonist. The geometrical shapes of the calculated low-energy backbone structures for each compound were compared to those of LHRH itself. It appeared that the beta-II' turn at the Tyr5-Gly6-Leu7-Arg8 central tetrapeptide is the common structure for all LHRH agonists considered. LHRH antagonists also possess a common chain reversal in the central tetrapeptide, but it is different from that for LHRH agonists. The LHRH agonists share a similar low-energy conformer at the level of the entire peptide backbone. A characteristic feature of this conformer is a 'surface' formed by a 'polygon' with hydrophobic moieties of pGlu1, Trp3, Tyr5, Leu7 and Pro9 in the corners and with the side chain of the His2 residue in the middle, the latter being crucial for a manifestation of LHRH agonistic activity. Since the N-terminal tripeptide of LHRH presumably participates in a direct interaction with specific receptors, it is legitimate to suggest that the beta-II' turn in the central tetrapeptide maintains the proper spatial arrangement of the N-terminal tripeptide. On the other hand, LHRH antagonists considered in this study were shown to possess low-energy structures, with the spatial arrangement of the residues in the N-terminal tripeptide similar to that of agonists. This would suggest a new approach to the design of LHRH antagonists, namely by stabilizing this specific arrangement, rather than the beta-II' turn in the central tetrapeptide.</p>","PeriodicalId":14204,"journal":{"name":"International journal of peptide and protein research","volume":"42 2","pages":"181-93"},"PeriodicalIF":0.0000,"publicationDate":"1993-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformation-function relationships in LHRH analogs. II. Conformations of LHRH peptide agonists and antagonists.\",\"authors\":\"G V Nikiforovich,&nbsp;G R Marshall\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Systematic energy calculations were performed for a series of LHRH analogs including five agonists with substitutions of D- or N-Me-amino acid residues in positions 4, 6 and 7, and five antagonists with substitutions of D-, N-Me- or alpha-Me-amino acid residues in positions 1, 2, 3, 6, 7 and 10, as well as a bicyclic LHRH antagonist. The geometrical shapes of the calculated low-energy backbone structures for each compound were compared to those of LHRH itself. It appeared that the beta-II' turn at the Tyr5-Gly6-Leu7-Arg8 central tetrapeptide is the common structure for all LHRH agonists considered. LHRH antagonists also possess a common chain reversal in the central tetrapeptide, but it is different from that for LHRH agonists. The LHRH agonists share a similar low-energy conformer at the level of the entire peptide backbone. A characteristic feature of this conformer is a 'surface' formed by a 'polygon' with hydrophobic moieties of pGlu1, Trp3, Tyr5, Leu7 and Pro9 in the corners and with the side chain of the His2 residue in the middle, the latter being crucial for a manifestation of LHRH agonistic activity. Since the N-terminal tripeptide of LHRH presumably participates in a direct interaction with specific receptors, it is legitimate to suggest that the beta-II' turn in the central tetrapeptide maintains the proper spatial arrangement of the N-terminal tripeptide. On the other hand, LHRH antagonists considered in this study were shown to possess low-energy structures, with the spatial arrangement of the residues in the N-terminal tripeptide similar to that of agonists. This would suggest a new approach to the design of LHRH antagonists, namely by stabilizing this specific arrangement, rather than the beta-II' turn in the central tetrapeptide.</p>\",\"PeriodicalId\":14204,\"journal\":{\"name\":\"International journal of peptide and protein research\",\"volume\":\"42 2\",\"pages\":\"181-93\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of peptide and protein research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of peptide and protein research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们对一系列LHRH类似物进行了系统的能量计算,包括5种在4、6和7位取代D-或N-Me氨基酸残基的激动剂,5种在1、2、3、6、7和10位取代D-、N-Me或α - me氨基酸残基的拮抗剂,以及1种双环LHRH拮抗剂。计算出的每个化合物的低能主链结构的几何形状与LHRH本身的几何形状进行了比较。在Tyr5-Gly6-Leu7-Arg8中心四肽上的β - ii '转似乎是所有LHRH激动剂的共同结构。LHRH拮抗剂在中心四肽中也具有共同的链反转,但与LHRH激动剂不同。LHRH激动剂在整个肽主链的水平上具有相似的低能量构象。该构象的一个特征是“表面”是由一个“多边形”组成的,其角上有pGlu1、Trp3、Tyr5、Leu7和Pro9的疏水部分,中间有His2残基的侧链,后者对于LHRH激动活性的表现至关重要。由于LHRH的n端三肽可能参与了与特定受体的直接相互作用,因此可以合理地认为,中央四肽的β - ii '转向维持了n端三肽的适当空间排列。另一方面,本研究中考虑的LHRH拮抗剂具有低能量结构,其n端三肽残基的空间排列与激动剂相似。这将为LHRH拮抗剂的设计提供一种新的方法,即通过稳定这种特定的排列,而不是中央四肽的β - ii '转位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conformation-function relationships in LHRH analogs. II. Conformations of LHRH peptide agonists and antagonists.

Systematic energy calculations were performed for a series of LHRH analogs including five agonists with substitutions of D- or N-Me-amino acid residues in positions 4, 6 and 7, and five antagonists with substitutions of D-, N-Me- or alpha-Me-amino acid residues in positions 1, 2, 3, 6, 7 and 10, as well as a bicyclic LHRH antagonist. The geometrical shapes of the calculated low-energy backbone structures for each compound were compared to those of LHRH itself. It appeared that the beta-II' turn at the Tyr5-Gly6-Leu7-Arg8 central tetrapeptide is the common structure for all LHRH agonists considered. LHRH antagonists also possess a common chain reversal in the central tetrapeptide, but it is different from that for LHRH agonists. The LHRH agonists share a similar low-energy conformer at the level of the entire peptide backbone. A characteristic feature of this conformer is a 'surface' formed by a 'polygon' with hydrophobic moieties of pGlu1, Trp3, Tyr5, Leu7 and Pro9 in the corners and with the side chain of the His2 residue in the middle, the latter being crucial for a manifestation of LHRH agonistic activity. Since the N-terminal tripeptide of LHRH presumably participates in a direct interaction with specific receptors, it is legitimate to suggest that the beta-II' turn in the central tetrapeptide maintains the proper spatial arrangement of the N-terminal tripeptide. On the other hand, LHRH antagonists considered in this study were shown to possess low-energy structures, with the spatial arrangement of the residues in the N-terminal tripeptide similar to that of agonists. This would suggest a new approach to the design of LHRH antagonists, namely by stabilizing this specific arrangement, rather than the beta-II' turn in the central tetrapeptide.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Noninvasive continuous monitoring of solid-phase peptide synthesis by acid-base indicator. Effect of aromatic amino acid substitutions in the 3-position of cyclic beta-casomorphin analogues on mu-opioid agonist/delta-opioid antagonist properties. Conformational investigation of alpha,beta-dehydropeptides. VII. Conformation of Ac-Pro-deltaAla-NHCH3 and Ac-Pro-(E)-deltaAbu-NHCH3: comparison with (Z)-substituted alpha,beta-dehydropeptides. Protease-catalyzed synthesis of Leu-enkephalin in a solvent-free system. beta-endorphin1-31 in the rat pituitary.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1