M K Chyan, A C Elia, G B Principato, E Giovannini, G Rosi, S J Norton
{"title":"s -氟酰甲氧羰基谷胱甘肽和二酯:抑制哺乳动物乙草醛酶II。","authors":"M K Chyan, A C Elia, G B Principato, E Giovannini, G Rosi, S J Norton","doi":"10.1159/000474983","DOIUrl":null,"url":null,"abstract":"<p><p>Inhibitors having high specificity toward mammalian glyoxalase II, but not glyoxalase I, were sought as part of a program to study glyoxalase enzyme function in mammalian cells. The compound, S-fluorenylmethoxycarbonyl glutathione (FMOC-G), was synthesized and found to be a competitive inhibitor of purified calf liver glyoxalase II (Ki = 2.1 mumol/l). Inhibition constants (Ki values) for the other glyoxalase enzyme, glyoxalase I, and the glutathione-requiring enzyme, glutathione S-transferase, from other sources, were found to be 17 and 25 mumol/l, respectively. FMOC-G is a very poor inhibitor of glutathione reductase and glutathione peroxidase. Diesters (dimethyl, diethyl, diisopropyl) of FMCO-G were also synthesized, as proinhibitors, to improve transport of FMOC-G into mammalian tumor cells (rat adrenal pheochromocytoma, PC-12) in culture. The diesters were inhibitory to cell growth and variability; the most effective of these, diisopropyl FMOC-G, exhibited an [I]0.5 value of approximately 275 mumol/l. Diesters of FMOC-G may be useful in studies of the glyoxalase enzyme system in cultured mammalian cells.</p>","PeriodicalId":11854,"journal":{"name":"Enzyme & protein","volume":"48 3","pages":"164-73"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000474983","citationCount":"7","resultStr":"{\"title\":\"S-fluorenylmethoxycarbonyl glutathione and diesters: inhibition of mammalian glyoxalase II.\",\"authors\":\"M K Chyan, A C Elia, G B Principato, E Giovannini, G Rosi, S J Norton\",\"doi\":\"10.1159/000474983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inhibitors having high specificity toward mammalian glyoxalase II, but not glyoxalase I, were sought as part of a program to study glyoxalase enzyme function in mammalian cells. The compound, S-fluorenylmethoxycarbonyl glutathione (FMOC-G), was synthesized and found to be a competitive inhibitor of purified calf liver glyoxalase II (Ki = 2.1 mumol/l). Inhibition constants (Ki values) for the other glyoxalase enzyme, glyoxalase I, and the glutathione-requiring enzyme, glutathione S-transferase, from other sources, were found to be 17 and 25 mumol/l, respectively. FMOC-G is a very poor inhibitor of glutathione reductase and glutathione peroxidase. Diesters (dimethyl, diethyl, diisopropyl) of FMCO-G were also synthesized, as proinhibitors, to improve transport of FMOC-G into mammalian tumor cells (rat adrenal pheochromocytoma, PC-12) in culture. The diesters were inhibitory to cell growth and variability; the most effective of these, diisopropyl FMOC-G, exhibited an [I]0.5 value of approximately 275 mumol/l. Diesters of FMOC-G may be useful in studies of the glyoxalase enzyme system in cultured mammalian cells.</p>\",\"PeriodicalId\":11854,\"journal\":{\"name\":\"Enzyme & protein\",\"volume\":\"48 3\",\"pages\":\"164-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000474983\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enzyme & protein\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000474983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme & protein","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000474983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
S-fluorenylmethoxycarbonyl glutathione and diesters: inhibition of mammalian glyoxalase II.
Inhibitors having high specificity toward mammalian glyoxalase II, but not glyoxalase I, were sought as part of a program to study glyoxalase enzyme function in mammalian cells. The compound, S-fluorenylmethoxycarbonyl glutathione (FMOC-G), was synthesized and found to be a competitive inhibitor of purified calf liver glyoxalase II (Ki = 2.1 mumol/l). Inhibition constants (Ki values) for the other glyoxalase enzyme, glyoxalase I, and the glutathione-requiring enzyme, glutathione S-transferase, from other sources, were found to be 17 and 25 mumol/l, respectively. FMOC-G is a very poor inhibitor of glutathione reductase and glutathione peroxidase. Diesters (dimethyl, diethyl, diisopropyl) of FMCO-G were also synthesized, as proinhibitors, to improve transport of FMOC-G into mammalian tumor cells (rat adrenal pheochromocytoma, PC-12) in culture. The diesters were inhibitory to cell growth and variability; the most effective of these, diisopropyl FMOC-G, exhibited an [I]0.5 value of approximately 275 mumol/l. Diesters of FMOC-G may be useful in studies of the glyoxalase enzyme system in cultured mammalian cells.