识别和处理受损的DNA。

T Lindahl
{"title":"识别和处理受损的DNA。","authors":"T Lindahl","doi":"10.1242/jcs.1995.supplement_19.10","DOIUrl":null,"url":null,"abstract":"<p><p>Base excision-repair, which is required for correction of spontaneous hydrolytic and oxidative damage to DNA as well as lesions inflicted by alkylating agents, is a relatively well understood repair pathway. Mammalian factors involved in this pathway are reviewed, with emphasis on current uncertainties. Most DNA replication and repair enzymes in mammalian cell nuclei, e.g. DNA polymerases alpha, beta, delta, and epsilon, have direct counterparts in yeast. In contrast, the abundant enzymes in mammalian cell nuclei that bind and are activated specifically by DNA strand interruptions, poly(ADP-ribose) polymerase and DNA-dependent protein kinase, have not been detected in yeast; nor has p53, which is elevated in response to DNA strand breaks. We have found a family of four distinct DNA ligases in human cell nuclei, whereas only a single DNA ligase has been detected in yeast. It would appear that the cellular responses to DNA strand breaks may differ markedly between higher and lower eukaryotes.</p>","PeriodicalId":77195,"journal":{"name":"Journal of cell science. Supplement","volume":"19 ","pages":"73-7"},"PeriodicalIF":0.0000,"publicationDate":"1995-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1242/jcs.1995.supplement_19.10","citationCount":"49","resultStr":"{\"title\":\"Recognition and processing of damaged DNA.\",\"authors\":\"T Lindahl\",\"doi\":\"10.1242/jcs.1995.supplement_19.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Base excision-repair, which is required for correction of spontaneous hydrolytic and oxidative damage to DNA as well as lesions inflicted by alkylating agents, is a relatively well understood repair pathway. Mammalian factors involved in this pathway are reviewed, with emphasis on current uncertainties. Most DNA replication and repair enzymes in mammalian cell nuclei, e.g. DNA polymerases alpha, beta, delta, and epsilon, have direct counterparts in yeast. In contrast, the abundant enzymes in mammalian cell nuclei that bind and are activated specifically by DNA strand interruptions, poly(ADP-ribose) polymerase and DNA-dependent protein kinase, have not been detected in yeast; nor has p53, which is elevated in response to DNA strand breaks. We have found a family of four distinct DNA ligases in human cell nuclei, whereas only a single DNA ligase has been detected in yeast. It would appear that the cellular responses to DNA strand breaks may differ markedly between higher and lower eukaryotes.</p>\",\"PeriodicalId\":77195,\"journal\":{\"name\":\"Journal of cell science. Supplement\",\"volume\":\"19 \",\"pages\":\"73-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1242/jcs.1995.supplement_19.10\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cell science. Supplement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1242/jcs.1995.supplement_19.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science. Supplement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1242/jcs.1995.supplement_19.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

碱基切除-修复是修复DNA自发水解和氧化损伤以及烷基化剂造成的损伤所必需的,是一种相对较好的修复途径。本文回顾了参与这一途径的哺乳动物因素,重点是当前的不确定性。哺乳动物细胞核中的大多数DNA复制和修复酶,如DNA聚合酶α、β、δ和ε,在酵母中都有直接对应的酶。相比之下,哺乳动物细胞核中丰富的结合并被DNA链中断特异性激活的酶,聚(adp -核糖)聚合酶和DNA依赖性蛋白激酶,在酵母中尚未发现;p53也是如此,它在DNA链断裂的反应中升高。我们在人类细胞核中发现了一个由四种不同的DNA连接酶组成的家族,而在酵母中只检测到一种DNA连接酶。看来,细胞对DNA链断裂的反应可能在高等和低等真核生物之间有明显的不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recognition and processing of damaged DNA.

Base excision-repair, which is required for correction of spontaneous hydrolytic and oxidative damage to DNA as well as lesions inflicted by alkylating agents, is a relatively well understood repair pathway. Mammalian factors involved in this pathway are reviewed, with emphasis on current uncertainties. Most DNA replication and repair enzymes in mammalian cell nuclei, e.g. DNA polymerases alpha, beta, delta, and epsilon, have direct counterparts in yeast. In contrast, the abundant enzymes in mammalian cell nuclei that bind and are activated specifically by DNA strand interruptions, poly(ADP-ribose) polymerase and DNA-dependent protein kinase, have not been detected in yeast; nor has p53, which is elevated in response to DNA strand breaks. We have found a family of four distinct DNA ligases in human cell nuclei, whereas only a single DNA ligase has been detected in yeast. It would appear that the cellular responses to DNA strand breaks may differ markedly between higher and lower eukaryotes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Studies of DNA methylation in animals. Characterization of the execution phase of apoptosis in vitro using extracts from condemned-phase cells. Analysis of the temporal program of replication initiation in yeast chromosomes. On the structure of replication and transcription factories. Stepwise assembly of initiation complexes at budding yeast replication origins during the cell cycle.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1