髓鞘碱性蛋白的adp核糖基化和磷脂囊泡聚集的抑制。

Enzyme & protein Pub Date : 1994-01-01 DOI:10.1159/000474990
C Yamamori, M Terashima, H Ishino, M Shimoyama
{"title":"髓鞘碱性蛋白的adp核糖基化和磷脂囊泡聚集的抑制。","authors":"C Yamamori,&nbsp;M Terashima,&nbsp;H Ishino,&nbsp;M Shimoyama","doi":"10.1159/000474990","DOIUrl":null,"url":null,"abstract":"<p><p>Four isoforms of myelin basic protein (MBP) from chicken brain were ADP-ribosylated by chicken heterophil ADP-ribosyltransferase. The 21-kD isoform was the most preferential substrate of this transferase. With this isoform, the Km values were estimated to be 330 mumol/l for NAD and 30 mumol/l for MBP, and the optimal pH for ADP-ribosylation was 8.5. The stoichiometry of ADP-ribose incorporation into 21-kD MBP was 3.5 mol of ADP-ribose/mol MBP. We found the inhibition of ADP-ribosylation of MBP by hydroxylamine and L-arginine indicating that this modification was likely to be mediated by arginine residues. Proteolytic peptide maps of ADP-ribosylated MBP by chicken ADP-ribosyltransferase and cholera toxin showed partially different radio active bands. When 21-kD MBP was ADP-ribosylated by chicken transferase, the potential for phospholipid vesicle aggregation was reduced in proportion of the degree of ADP-ribosylation. The possibility that ADP-ribosylation of MBP may control stabilization of myelin through regulation of its affinity for phospholipid in vivo would need to be considered.</p>","PeriodicalId":11854,"journal":{"name":"Enzyme & protein","volume":"48 4","pages":"202-12"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000474990","citationCount":"4","resultStr":"{\"title\":\"ADP-ribosylation of myelin basic protein and inhibition of phospholipid vesicle aggregation.\",\"authors\":\"C Yamamori,&nbsp;M Terashima,&nbsp;H Ishino,&nbsp;M Shimoyama\",\"doi\":\"10.1159/000474990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Four isoforms of myelin basic protein (MBP) from chicken brain were ADP-ribosylated by chicken heterophil ADP-ribosyltransferase. The 21-kD isoform was the most preferential substrate of this transferase. With this isoform, the Km values were estimated to be 330 mumol/l for NAD and 30 mumol/l for MBP, and the optimal pH for ADP-ribosylation was 8.5. The stoichiometry of ADP-ribose incorporation into 21-kD MBP was 3.5 mol of ADP-ribose/mol MBP. We found the inhibition of ADP-ribosylation of MBP by hydroxylamine and L-arginine indicating that this modification was likely to be mediated by arginine residues. Proteolytic peptide maps of ADP-ribosylated MBP by chicken ADP-ribosyltransferase and cholera toxin showed partially different radio active bands. When 21-kD MBP was ADP-ribosylated by chicken transferase, the potential for phospholipid vesicle aggregation was reduced in proportion of the degree of ADP-ribosylation. The possibility that ADP-ribosylation of MBP may control stabilization of myelin through regulation of its affinity for phospholipid in vivo would need to be considered.</p>\",\"PeriodicalId\":11854,\"journal\":{\"name\":\"Enzyme & protein\",\"volume\":\"48 4\",\"pages\":\"202-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000474990\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enzyme & protein\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000474990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme & protein","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000474990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

用鸡嗜杂性adp -核糖基转移酶对鸡脑髓鞘碱性蛋白(MBP)的4种同工型进行了adp -核糖基化。21-kD亚型是该转移酶最优先的底物。利用该异构体,NAD的Km值估计为330 μ mol/l, MBP的Km值估计为30 μ mol/l, adp -核糖基化的最佳pH为8.5。adp核糖掺入21-kD MBP的化学计量为3.5 mol adp核糖/mol MBP。我们发现羟胺和l -精氨酸对MBP的adp核糖基化有抑制作用,表明这种修饰可能是由精氨酸残基介导的。鸡adp -核糖基转移酶和霍乱毒素对adp -核糖基化MBP的蛋白水解肽图谱显示出部分不同的放射性活性带。当21-kD MBP被鸡转移酶adp核糖基化后,磷脂囊泡聚集的可能性与adp核糖基化程度成比例地降低。MBP的adp核糖基化可能通过调节髓磷脂在体内的亲和力来控制髓磷脂的稳定,这一可能性需要考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ADP-ribosylation of myelin basic protein and inhibition of phospholipid vesicle aggregation.

Four isoforms of myelin basic protein (MBP) from chicken brain were ADP-ribosylated by chicken heterophil ADP-ribosyltransferase. The 21-kD isoform was the most preferential substrate of this transferase. With this isoform, the Km values were estimated to be 330 mumol/l for NAD and 30 mumol/l for MBP, and the optimal pH for ADP-ribosylation was 8.5. The stoichiometry of ADP-ribose incorporation into 21-kD MBP was 3.5 mol of ADP-ribose/mol MBP. We found the inhibition of ADP-ribosylation of MBP by hydroxylamine and L-arginine indicating that this modification was likely to be mediated by arginine residues. Proteolytic peptide maps of ADP-ribosylated MBP by chicken ADP-ribosyltransferase and cholera toxin showed partially different radio active bands. When 21-kD MBP was ADP-ribosylated by chicken transferase, the potential for phospholipid vesicle aggregation was reduced in proportion of the degree of ADP-ribosylation. The possibility that ADP-ribosylation of MBP may control stabilization of myelin through regulation of its affinity for phospholipid in vivo would need to be considered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanisms controlling the transcription of matrix metalloproteinase genes in normal and neoplastic cells. What structure and function of avian plasminogen activator and matrix metalloproteinase-2 reveal about their counterpart mammalian enzymes, their regulation and their role in tumor invasion. Proteases associated with invadopodia, and their role in degradation of extracellular matrix. Cooperation between matrix metalloproteinases and the plasminogen activator-plasmin system in tumor progression. Urokinase plasminogen activator as a predictor of aggressive disease in breast cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1