{"title":"谷氨酰胺环转移酶(QC)底物和抑制剂特异性。","authors":"M Y Gololobov, W Wang, R C Bateman","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This paper reports a systematic study of the substrate and inhibitor specificity of papaya latex glutamine cyclotransferase (QC). The results showed that the second amino acid residue in N-terminal glutaminyl peptides significantly accelerated papaya latex QC-catalyzed reactions while the third residue provided no further rate enhancement. Substrate binding was shown to be the main specificity-determining step. Fifteen proline derivatives and dipeptides containing an N-terminal proline were tested and found to inhibit papaya latex QC. This supports our previous molecular modeling study of the QC catalytic pathway which suggested a structure of the reaction intermediates similar to that of L-proline.</p>","PeriodicalId":8963,"journal":{"name":"Biological chemistry Hoppe-Seyler","volume":"377 6","pages":"395-8"},"PeriodicalIF":0.0000,"publicationDate":"1996-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Substrate and inhibitor specificity of glutamine cyclotransferase (QC).\",\"authors\":\"M Y Gololobov, W Wang, R C Bateman\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper reports a systematic study of the substrate and inhibitor specificity of papaya latex glutamine cyclotransferase (QC). The results showed that the second amino acid residue in N-terminal glutaminyl peptides significantly accelerated papaya latex QC-catalyzed reactions while the third residue provided no further rate enhancement. Substrate binding was shown to be the main specificity-determining step. Fifteen proline derivatives and dipeptides containing an N-terminal proline were tested and found to inhibit papaya latex QC. This supports our previous molecular modeling study of the QC catalytic pathway which suggested a structure of the reaction intermediates similar to that of L-proline.</p>\",\"PeriodicalId\":8963,\"journal\":{\"name\":\"Biological chemistry Hoppe-Seyler\",\"volume\":\"377 6\",\"pages\":\"395-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological chemistry Hoppe-Seyler\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological chemistry Hoppe-Seyler","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Substrate and inhibitor specificity of glutamine cyclotransferase (QC).
This paper reports a systematic study of the substrate and inhibitor specificity of papaya latex glutamine cyclotransferase (QC). The results showed that the second amino acid residue in N-terminal glutaminyl peptides significantly accelerated papaya latex QC-catalyzed reactions while the third residue provided no further rate enhancement. Substrate binding was shown to be the main specificity-determining step. Fifteen proline derivatives and dipeptides containing an N-terminal proline were tested and found to inhibit papaya latex QC. This supports our previous molecular modeling study of the QC catalytic pathway which suggested a structure of the reaction intermediates similar to that of L-proline.