地拉西普抑制犬肌上皮囊泡中蝙蝠毒素与钠通道的结合。

K Chiba, H Hashizume, S I Inagaki, Y Abiko
{"title":"地拉西普抑制犬肌上皮囊泡中蝙蝠毒素与钠通道的结合。","authors":"K Chiba,&nbsp;H Hashizume,&nbsp;S I Inagaki,&nbsp;Y Abiko","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We studied the effect of dilazep on the binding of [3H]- batrachotoxinin A 20 alpha-benzoate ([3H]BTXB), which binds to and stabilizes the activated state of the Na+ channel, and compared it with that of lidocaine in canine cardiac sarcolemmal vesicles. Dilazep inhibited the specific [3H]BTXB binding in a dose-dependent manner with an IC50 value of 0.37 microM, while lidocaine inhibited it with an IC50 value of 92 microM. Scatchard analysis of [3H]BTXB binding demonstrated that both dilazep and lidocaine reduced the amax without a marked effect on the K(D). The inhibition of [3H]BTXB induced by dilazep was reversible. Both dilazep (4 microM) and lidocaine (100 microM) increased the dissociation rate constant of [3H]BTXB only in concentrations which are about a 10-fold greater than their IC50, indicating the low affinity of both drugs for the [3H]BTXB-bound Na+ channel. However, dilazep (0.5 microM) and lidocaine (100 microM) decreased significantly the association rate constant of the [3H]BTXB binding at concentrations near their IC50, indicating that the affinity of both drugs for the [3H]BTXB-unbound Na+ channel is relatively high. These results suggest that, in canine cardiac membrane vesicles, the effect of dilazep in inhibiting the binding of [3H]BTXB and stabilizing the Na+ channel is similar to that of lidocaine, but the potency of dilazep is greater than that of lidocaine.</p>","PeriodicalId":8166,"journal":{"name":"Archives internationales de pharmacodynamie et de therapie","volume":"330 2","pages":"138-50"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dilazep inhibits binding of batrachotoxin to sodium channels in canine sarcolemmal vesicles.\",\"authors\":\"K Chiba,&nbsp;H Hashizume,&nbsp;S I Inagaki,&nbsp;Y Abiko\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We studied the effect of dilazep on the binding of [3H]- batrachotoxinin A 20 alpha-benzoate ([3H]BTXB), which binds to and stabilizes the activated state of the Na+ channel, and compared it with that of lidocaine in canine cardiac sarcolemmal vesicles. Dilazep inhibited the specific [3H]BTXB binding in a dose-dependent manner with an IC50 value of 0.37 microM, while lidocaine inhibited it with an IC50 value of 92 microM. Scatchard analysis of [3H]BTXB binding demonstrated that both dilazep and lidocaine reduced the amax without a marked effect on the K(D). The inhibition of [3H]BTXB induced by dilazep was reversible. Both dilazep (4 microM) and lidocaine (100 microM) increased the dissociation rate constant of [3H]BTXB only in concentrations which are about a 10-fold greater than their IC50, indicating the low affinity of both drugs for the [3H]BTXB-bound Na+ channel. However, dilazep (0.5 microM) and lidocaine (100 microM) decreased significantly the association rate constant of the [3H]BTXB binding at concentrations near their IC50, indicating that the affinity of both drugs for the [3H]BTXB-unbound Na+ channel is relatively high. These results suggest that, in canine cardiac membrane vesicles, the effect of dilazep in inhibiting the binding of [3H]BTXB and stabilizing the Na+ channel is similar to that of lidocaine, but the potency of dilazep is greater than that of lidocaine.</p>\",\"PeriodicalId\":8166,\"journal\":{\"name\":\"Archives internationales de pharmacodynamie et de therapie\",\"volume\":\"330 2\",\"pages\":\"138-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives internationales de pharmacodynamie et de therapie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives internationales de pharmacodynamie et de therapie","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了地拉西普对[3H]-兵鱼毒素A - 20 α -苯甲酸酯([3H]BTXB)结合并稳定Na+通道激活状态的影响,并与利多卡因在犬心脏肌鞘小泡中的作用进行了比较。地拉西普抑制特异性[3H]BTXB结合呈剂量依赖性,IC50值为0.37 microM,利多卡因抑制IC50值为92 microM。[3H]BTXB结合的Scatchard分析表明,地拉西普和利多卡因均能降低amax,但对K(D)无明显影响。地拉西普对[3H]BTXB的抑制是可逆的。地拉西普(4 μ m)和利多卡因(100 μ m)均能增加[3H]BTXB的解离速率常数,其浓度仅为其IC50的10倍左右,表明这两种药物对[3H]BTXB结合的Na+通道的亲和力较低。然而,地拉西普(0.5 μ m)和利多卡因(100 μ m)在浓度接近IC50时,显著降低了[3H]BTXB结合的结合速率常数,表明两种药物对[3H]BTXB未结合的Na+通道的亲和力相对较高。上述结果提示,在犬心膜囊泡中,地拉西普抑制[3H]BTXB结合和稳定Na+通道的作用与利多卡因相似,但其效价大于利多卡因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dilazep inhibits binding of batrachotoxin to sodium channels in canine sarcolemmal vesicles.

We studied the effect of dilazep on the binding of [3H]- batrachotoxinin A 20 alpha-benzoate ([3H]BTXB), which binds to and stabilizes the activated state of the Na+ channel, and compared it with that of lidocaine in canine cardiac sarcolemmal vesicles. Dilazep inhibited the specific [3H]BTXB binding in a dose-dependent manner with an IC50 value of 0.37 microM, while lidocaine inhibited it with an IC50 value of 92 microM. Scatchard analysis of [3H]BTXB binding demonstrated that both dilazep and lidocaine reduced the amax without a marked effect on the K(D). The inhibition of [3H]BTXB induced by dilazep was reversible. Both dilazep (4 microM) and lidocaine (100 microM) increased the dissociation rate constant of [3H]BTXB only in concentrations which are about a 10-fold greater than their IC50, indicating the low affinity of both drugs for the [3H]BTXB-bound Na+ channel. However, dilazep (0.5 microM) and lidocaine (100 microM) decreased significantly the association rate constant of the [3H]BTXB binding at concentrations near their IC50, indicating that the affinity of both drugs for the [3H]BTXB-unbound Na+ channel is relatively high. These results suggest that, in canine cardiac membrane vesicles, the effect of dilazep in inhibiting the binding of [3H]BTXB and stabilizing the Na+ channel is similar to that of lidocaine, but the potency of dilazep is greater than that of lidocaine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Growth and metabolism. Alteration of the cardiac effects of midazolam by hypothermia in rat isolated atria. K+ channel-opening action contributes to the preventive effects of nicorandil on U46619-induced vasoconstriction of canine large coronary arteries in vivo. Effects of mefloquine on Ca2+ uptake and release by dog brain microsomes. Observation of high and low molecular weight inhibitors of angiotensin-converting enzyme in rat lung.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1