肝细胞生长因子分散的Madin-Darby犬肾上皮细胞极化过程中微管动态转换受到抑制和刺激。

P Wadsworth, D P Bottaro
{"title":"肝细胞生长因子分散的Madin-Darby犬肾上皮细胞极化过程中微管动态转换受到抑制和刺激。","authors":"P Wadsworth,&nbsp;D P Bottaro","doi":"10.1002/(SICI)1097-0169(1996)35:3<225::AID-CM5>3.0.CO;2-7","DOIUrl":null,"url":null,"abstract":"<p><p>The dynamic behavior of microtubules has been measured in non-polarized, polarized, and hepatocyte growth factor treated Madin-Darby canine kidney epithelial cells. In a nocodazole disassembly assay, microtubules in polarized cells were more resistant to depolymerization than microtubules in non-polarized cells; microtubules in scattered cells were nearly completely disassembled. Analysis of fluorescent microtubules in living cells further revealed that individual microtubules in polarized cells were kinetically stabilized and microtubules in scattered cells were highly dynamic. Individual microtubule behavior in polarized cells was characterized by a suppression of the average rate of shortening, an increase in the average duration of pause, a decrease in the frequency of catastrophe transitions, and an increase in the frequency of rescue transitions, when compared with microtubules in non-polarized cells. In contrast, microtubule behavior in epithelial cells treated with hepatocyte growth factor was characterized by increase in the average rates of microtubule growth and shortening, a decrease in the frequency of rescue transitions, and an increase in the frequency of catastrophe transitions, when compared with polarized cells. Dynamicity, a measure of the gain and loss of subunits from microtubule plus ends, was 2.7 microns/min in polarized cells and 11.1 microns/min in scattered cells. These results demonstrate that individual microtubule dynamic behavior is markedly suppressed in polarized epithelial cells. Our results further demonstrate that in addition to its previously characterized effects on cell locomotion, hepatocyte growth factor stimulates microtubule dynamic turnover in lamellar regions of living cells.</p>","PeriodicalId":9675,"journal":{"name":"Cell motility and the cytoskeleton","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1996-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/(SICI)1097-0169(1996)35:3<225::AID-CM5>3.0.CO;2-7","citationCount":"19","resultStr":"{\"title\":\"Microtubule dynamic turnover is suppressed during polarization and stimulated in hepatocyte growth factor scattered Madin-Darby canine kidney epithelial cells.\",\"authors\":\"P Wadsworth,&nbsp;D P Bottaro\",\"doi\":\"10.1002/(SICI)1097-0169(1996)35:3<225::AID-CM5>3.0.CO;2-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The dynamic behavior of microtubules has been measured in non-polarized, polarized, and hepatocyte growth factor treated Madin-Darby canine kidney epithelial cells. In a nocodazole disassembly assay, microtubules in polarized cells were more resistant to depolymerization than microtubules in non-polarized cells; microtubules in scattered cells were nearly completely disassembled. Analysis of fluorescent microtubules in living cells further revealed that individual microtubules in polarized cells were kinetically stabilized and microtubules in scattered cells were highly dynamic. Individual microtubule behavior in polarized cells was characterized by a suppression of the average rate of shortening, an increase in the average duration of pause, a decrease in the frequency of catastrophe transitions, and an increase in the frequency of rescue transitions, when compared with microtubules in non-polarized cells. In contrast, microtubule behavior in epithelial cells treated with hepatocyte growth factor was characterized by increase in the average rates of microtubule growth and shortening, a decrease in the frequency of rescue transitions, and an increase in the frequency of catastrophe transitions, when compared with polarized cells. Dynamicity, a measure of the gain and loss of subunits from microtubule plus ends, was 2.7 microns/min in polarized cells and 11.1 microns/min in scattered cells. These results demonstrate that individual microtubule dynamic behavior is markedly suppressed in polarized epithelial cells. Our results further demonstrate that in addition to its previously characterized effects on cell locomotion, hepatocyte growth factor stimulates microtubule dynamic turnover in lamellar regions of living cells.</p>\",\"PeriodicalId\":9675,\"journal\":{\"name\":\"Cell motility and the cytoskeleton\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/(SICI)1097-0169(1996)35:3<225::AID-CM5>3.0.CO;2-7\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell motility and the cytoskeleton\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/(SICI)1097-0169(1996)35:3<225::AID-CM5>3.0.CO;2-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell motility and the cytoskeleton","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/(SICI)1097-0169(1996)35:3<225::AID-CM5>3.0.CO;2-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

在非极化、极化和肝细胞生长因子处理的Madin-Darby犬肾上皮细胞中测量了微管的动态行为。在nocodazole分解实验中,极化细胞中的微管比非极化细胞中的微管更能抵抗解聚;分散细胞中的微管几乎完全解体。对活细胞荧光微管的分析进一步表明,极化细胞中的单个微管具有动力学稳定性,而分散细胞中的微管具有高度动态性。与非极化细胞中的微管相比,极化细胞中的单个微管行为的特征是平均缩短率受到抑制,平均暂停时间增加,突变转换频率减少,救援转换频率增加。相比之下,与极化细胞相比,经肝细胞生长因子处理的上皮细胞的微管行为表现为微管生长和缩短的平均速率增加,救援转换频率减少,突变转换频率增加。动态,衡量微管正端亚基的增益和损失,在极化细胞中为2.7微米/分钟,在分散细胞中为11.1微米/分钟。这些结果表明,在极化上皮细胞中,单个微管动力学行为明显受到抑制。我们的研究结果进一步证明,除了其先前描述的对细胞运动的影响外,肝细胞生长因子还刺激活细胞片层区域的微管动态周转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microtubule dynamic turnover is suppressed during polarization and stimulated in hepatocyte growth factor scattered Madin-Darby canine kidney epithelial cells.

The dynamic behavior of microtubules has been measured in non-polarized, polarized, and hepatocyte growth factor treated Madin-Darby canine kidney epithelial cells. In a nocodazole disassembly assay, microtubules in polarized cells were more resistant to depolymerization than microtubules in non-polarized cells; microtubules in scattered cells were nearly completely disassembled. Analysis of fluorescent microtubules in living cells further revealed that individual microtubules in polarized cells were kinetically stabilized and microtubules in scattered cells were highly dynamic. Individual microtubule behavior in polarized cells was characterized by a suppression of the average rate of shortening, an increase in the average duration of pause, a decrease in the frequency of catastrophe transitions, and an increase in the frequency of rescue transitions, when compared with microtubules in non-polarized cells. In contrast, microtubule behavior in epithelial cells treated with hepatocyte growth factor was characterized by increase in the average rates of microtubule growth and shortening, a decrease in the frequency of rescue transitions, and an increase in the frequency of catastrophe transitions, when compared with polarized cells. Dynamicity, a measure of the gain and loss of subunits from microtubule plus ends, was 2.7 microns/min in polarized cells and 11.1 microns/min in scattered cells. These results demonstrate that individual microtubule dynamic behavior is markedly suppressed in polarized epithelial cells. Our results further demonstrate that in addition to its previously characterized effects on cell locomotion, hepatocyte growth factor stimulates microtubule dynamic turnover in lamellar regions of living cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vinculin. Insights into the Cell Wall and Cytoskeletal Regulation by Mechanical Forces in Plants The Actomyosin System in Plant Cell Division: Lessons Learned from Microscopy and Pharmacology Chloroplast Actin Filaments Involved in Chloroplast Photorelocation Movements Cooperation Between Auxin and Actin During the Process of Plant Polar Growth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1