骨骼肌细胞外液pH不均一性。

F Sjöberg, P Thorborg, N Lund
{"title":"骨骼肌细胞外液pH不均一性。","authors":"F Sjöberg,&nbsp;P Thorborg,&nbsp;N Lund","doi":"10.1159/000179171","DOIUrl":null,"url":null,"abstract":"<p><p>Oxygen and carbon dioxide are known to be heterogeneously distributed in tissues. Extracellular skeletal muscle tissue pH (pHt) also exhibits a spatial variability in vitro, but this has not been examined in vivo. pHt distributions in resting skeletal muscle and the effect of the dispersion of pHt on ischemia and normoxic hypercarbia was therefore studied in an animal model with a multichannel pH microelectrode. Under resting conditions and spontaneous breathing, local pHt (from all animals, n = 10) was found to vary between 6.96 and 7.68 (range), and 70% of the values were within a pH of 7.00-7.32. In each animal the maximum pHt differences (maximum range between the 6 channels of the microelectrode) found were 0.32 +/- 0.11 pH units (mean +/- SD). During tissue acidosis, induced by ischemia, no significant change in the local pHt differences in each animal was seen. During normoxic hypercarbia a 2-fold increase in pHt variability within each animal was noticed (p < 0.01), which suggests that carbon dioxide and buffering effects of the blood are significant factors for the pHt distribution. The pHt distribution range found is of similar magnitude as previously described in in vitro studies on skeletal muscle. Locally varying pHt levels may be of importance as they will affect cellular H+ extrusion, membrane potential and volume control of different cell populations differently.</p>","PeriodicalId":14035,"journal":{"name":"International journal of microcirculation, clinical and experimental","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1996-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000179171","citationCount":"4","resultStr":"{\"title\":\"pH heterogeneity in skeletal muscle extracellular fluid.\",\"authors\":\"F Sjöberg,&nbsp;P Thorborg,&nbsp;N Lund\",\"doi\":\"10.1159/000179171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oxygen and carbon dioxide are known to be heterogeneously distributed in tissues. Extracellular skeletal muscle tissue pH (pHt) also exhibits a spatial variability in vitro, but this has not been examined in vivo. pHt distributions in resting skeletal muscle and the effect of the dispersion of pHt on ischemia and normoxic hypercarbia was therefore studied in an animal model with a multichannel pH microelectrode. Under resting conditions and spontaneous breathing, local pHt (from all animals, n = 10) was found to vary between 6.96 and 7.68 (range), and 70% of the values were within a pH of 7.00-7.32. In each animal the maximum pHt differences (maximum range between the 6 channels of the microelectrode) found were 0.32 +/- 0.11 pH units (mean +/- SD). During tissue acidosis, induced by ischemia, no significant change in the local pHt differences in each animal was seen. During normoxic hypercarbia a 2-fold increase in pHt variability within each animal was noticed (p < 0.01), which suggests that carbon dioxide and buffering effects of the blood are significant factors for the pHt distribution. The pHt distribution range found is of similar magnitude as previously described in in vitro studies on skeletal muscle. Locally varying pHt levels may be of importance as they will affect cellular H+ extrusion, membrane potential and volume control of different cell populations differently.</p>\",\"PeriodicalId\":14035,\"journal\":{\"name\":\"International journal of microcirculation, clinical and experimental\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000179171\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of microcirculation, clinical and experimental\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000179171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of microcirculation, clinical and experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000179171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

氧和二氧化碳在组织中的分布是不均匀的。细胞外骨骼肌组织pH值(pHt)在体外也表现出空间变异性,但尚未在体内进行研究。因此,在动物模型中使用多通道pH微电极研究了静息骨骼肌中的pH分布以及pH分散对缺血和正氧性高碳的影响。在静息和自主呼吸条件下,所有动物(n = 10)的局部pH值在6.96 ~ 7.68(范围)之间变化,70%的pH值在7.00 ~ 7.32之间。在每只动物中发现的最大pH值差异(微电极6个通道之间的最大范围)为0.32 +/- 0.11 pH单位(平均+/- SD)。在缺血引起的组织酸中毒过程中,各组局部ph值差异未见明显变化。在常氧高碳化期间,每只动物的ph值变异性增加了2倍(p < 0.01),这表明二氧化碳和血液的缓冲作用是ph值分布的重要因素。发现的ph分布范围与先前在骨骼肌体外研究中描述的相似。局部pHt水平的变化可能很重要,因为它们会对不同细胞群的细胞H+挤出、膜电位和体积控制产生不同的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
pH heterogeneity in skeletal muscle extracellular fluid.

Oxygen and carbon dioxide are known to be heterogeneously distributed in tissues. Extracellular skeletal muscle tissue pH (pHt) also exhibits a spatial variability in vitro, but this has not been examined in vivo. pHt distributions in resting skeletal muscle and the effect of the dispersion of pHt on ischemia and normoxic hypercarbia was therefore studied in an animal model with a multichannel pH microelectrode. Under resting conditions and spontaneous breathing, local pHt (from all animals, n = 10) was found to vary between 6.96 and 7.68 (range), and 70% of the values were within a pH of 7.00-7.32. In each animal the maximum pHt differences (maximum range between the 6 channels of the microelectrode) found were 0.32 +/- 0.11 pH units (mean +/- SD). During tissue acidosis, induced by ischemia, no significant change in the local pHt differences in each animal was seen. During normoxic hypercarbia a 2-fold increase in pHt variability within each animal was noticed (p < 0.01), which suggests that carbon dioxide and buffering effects of the blood are significant factors for the pHt distribution. The pHt distribution range found is of similar magnitude as previously described in in vitro studies on skeletal muscle. Locally varying pHt levels may be of importance as they will affect cellular H+ extrusion, membrane potential and volume control of different cell populations differently.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measurement of blood perfusion in the dental pulp with laser Doppler flowmetry. Vascular smooth muscle, a multiply feedback-coupled system of high versatility, modulation and cell-signaling variability. Long-term registration of cutaneous microcirculation during general anesthesia. Synergetic interpretation of patterned vasomotor activity in microvascular perfusion: discrete effects of myogenic and neurogenic vasoconstriction as well as arterial and venous pressure fluctuations. Cardiovascular monitoring of elective aortic aneurysm repair using methods of chaos analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1