利用微核试验和碱性单细胞凝胶电泳技术(彗星法)研究1,2-二氯乙烯、1,1,2-三氯乙烷、1,3-二氯丙烷、1,2,3-三氯丙烷和1,1,3-三氯丙烯在人淋巴细胞中的体外诱变性和遗传毒性

M. Tafazoli, M. Kirsch-Volders
{"title":"利用微核试验和碱性单细胞凝胶电泳技术(彗星法)研究1,2-二氯乙烯、1,1,2-三氯乙烷、1,3-二氯丙烷、1,2,3-三氯丙烷和1,1,3-三氯丙烯在人淋巴细胞中的体外诱变性和遗传毒性","authors":"M. Tafazoli,&nbsp;M. Kirsch-Volders","doi":"10.1016/S0165-1218(96)90107-X","DOIUrl":null,"url":null,"abstract":"<div><p>The main objective of this study was to compare the cytotoxic genotoxic and mutagenic activity of a number of chlorinated aliphatic hydrocarbons, which are widely used as chemical intermediates, solvents, degreasing agents etc. in industry, and to establish the structure-toxicity relationship of the chemicals by using the most adequate determinants in estimating their toxicity. The mutagenicity and cytotoxicity of some of the candidate chemicals, namely 1,2-dichloroethylene, 1,1,2-trichloroethane, 1,3-dichloropropane, 1,2,3-trichloropropane and 1,1,3-trichloropropene were evaluated in an in vitro micronucleus assay. The cytokinesis-block methodology was applied on human lymphocytes in the presence or absence of an external metabolic activation system (S9-mix). In the micronucleus assay, all test substances, except 1,2,3-trichloropropane with and without S9-mix and 1,1,2-trichloroethane without S9-mix in the repeated experiment, exhibited a low but statistically significant mutagenic activity, compared to the concurrent control. However, none of the five chemicals was able to induce a clear and reproducible linear dose-dependent increase in micronucleus frequencies in this assay. Generally, mutagenic activity of the chemicals was found in the absence of severe cytotoxicity and/or cell cycle delay. The DNA breakage capacity and the cytotoxicity of these chemicals were also assessed in the alkaline single cell gel (SCG) electrophoresis test (comet assay) with and without S9-mix in isolated human lymphocytes. All chemical compounds induced DNA breakage, in the presence or absence of the metabolic activation system, at the doses tested. The data showed that the DNA reactivity of the chemicals increased with increasing degree of halogenation. The results of the present work suggested that the comet assay might be a more suitable and sensitive screening method than the micronucleus test for this particular class of compound. However, both assays do detect different endpoints.</p></div>","PeriodicalId":100938,"journal":{"name":"Mutation Research/Genetic Toxicology","volume":"371 3","pages":"Pages 185-202"},"PeriodicalIF":0.0000,"publicationDate":"1996-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0165-1218(96)90107-X","citationCount":"52","resultStr":"{\"title\":\"In vitro mutagenicity and genotoxicity study of 1,2-dichloroethylene, 1,1,2-trichloroethane, 1,3-dichloropropane, 1,2,3-trichloropropane and 1,1,3-trichloropropene, using the micronucleus test and the alkaline single cell gel electrophoresis technique (comet assay) in human lymphocytes\",\"authors\":\"M. Tafazoli,&nbsp;M. Kirsch-Volders\",\"doi\":\"10.1016/S0165-1218(96)90107-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The main objective of this study was to compare the cytotoxic genotoxic and mutagenic activity of a number of chlorinated aliphatic hydrocarbons, which are widely used as chemical intermediates, solvents, degreasing agents etc. in industry, and to establish the structure-toxicity relationship of the chemicals by using the most adequate determinants in estimating their toxicity. The mutagenicity and cytotoxicity of some of the candidate chemicals, namely 1,2-dichloroethylene, 1,1,2-trichloroethane, 1,3-dichloropropane, 1,2,3-trichloropropane and 1,1,3-trichloropropene were evaluated in an in vitro micronucleus assay. The cytokinesis-block methodology was applied on human lymphocytes in the presence or absence of an external metabolic activation system (S9-mix). In the micronucleus assay, all test substances, except 1,2,3-trichloropropane with and without S9-mix and 1,1,2-trichloroethane without S9-mix in the repeated experiment, exhibited a low but statistically significant mutagenic activity, compared to the concurrent control. However, none of the five chemicals was able to induce a clear and reproducible linear dose-dependent increase in micronucleus frequencies in this assay. Generally, mutagenic activity of the chemicals was found in the absence of severe cytotoxicity and/or cell cycle delay. The DNA breakage capacity and the cytotoxicity of these chemicals were also assessed in the alkaline single cell gel (SCG) electrophoresis test (comet assay) with and without S9-mix in isolated human lymphocytes. All chemical compounds induced DNA breakage, in the presence or absence of the metabolic activation system, at the doses tested. The data showed that the DNA reactivity of the chemicals increased with increasing degree of halogenation. The results of the present work suggested that the comet assay might be a more suitable and sensitive screening method than the micronucleus test for this particular class of compound. However, both assays do detect different endpoints.</p></div>\",\"PeriodicalId\":100938,\"journal\":{\"name\":\"Mutation Research/Genetic Toxicology\",\"volume\":\"371 3\",\"pages\":\"Pages 185-202\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0165-1218(96)90107-X\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research/Genetic Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016512189690107X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research/Genetic Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016512189690107X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

摘要本研究的主要目的是比较工业上广泛用作化学中间体、溶剂、脱脂剂等的几种氯化脂肪烃的细胞毒性、基因毒性和致突变活性,并利用最充分的决定因素估计其毒性,建立化学物质的结构-毒性关系。通过体外微核试验,对1,2-二氯乙烯、1,1,2-三氯乙烷、1,3-二氯丙烷、1,2,3-三氯丙烷和1,1,3-三氯丙烯等候选化学物质的致突变性和细胞毒性进行了评价。细胞分裂阻滞方法应用于存在或不存在外部代谢激活系统(S9-mix)的人淋巴细胞。在微核实验中,除重复实验中添加和不添加s9混合物的1,2,3-三氯丙烷和不添加s9混合物的1,1,2-三氯乙烷外,所有试验物质的致突变活性均较低,但与同期对照相比具有统计学意义。然而,这五种化学物质中没有一种能够在本实验中诱导微核频率的明确和可重复的线性剂量依赖性增加。一般来说,在没有严重的细胞毒性和/或细胞周期延迟的情况下发现化学物质的致突变活性。在分离的人淋巴细胞中,通过添加和不添加s9混合物的碱性单细胞凝胶(SCG)电泳试验(彗星试验)评估了这些化学物质的DNA破坏能力和细胞毒性。在所测试的剂量下,无论是否存在代谢激活系统,所有化合物都会引起DNA断裂。数据表明,随着卤化程度的增加,化学物质的DNA反应性增加。本研究结果表明,彗星试验可能是一种比微核试验更合适和敏感的筛选方法。然而,这两种检测方法确实检测到不同的终点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In vitro mutagenicity and genotoxicity study of 1,2-dichloroethylene, 1,1,2-trichloroethane, 1,3-dichloropropane, 1,2,3-trichloropropane and 1,1,3-trichloropropene, using the micronucleus test and the alkaline single cell gel electrophoresis technique (comet assay) in human lymphocytes

The main objective of this study was to compare the cytotoxic genotoxic and mutagenic activity of a number of chlorinated aliphatic hydrocarbons, which are widely used as chemical intermediates, solvents, degreasing agents etc. in industry, and to establish the structure-toxicity relationship of the chemicals by using the most adequate determinants in estimating their toxicity. The mutagenicity and cytotoxicity of some of the candidate chemicals, namely 1,2-dichloroethylene, 1,1,2-trichloroethane, 1,3-dichloropropane, 1,2,3-trichloropropane and 1,1,3-trichloropropene were evaluated in an in vitro micronucleus assay. The cytokinesis-block methodology was applied on human lymphocytes in the presence or absence of an external metabolic activation system (S9-mix). In the micronucleus assay, all test substances, except 1,2,3-trichloropropane with and without S9-mix and 1,1,2-trichloroethane without S9-mix in the repeated experiment, exhibited a low but statistically significant mutagenic activity, compared to the concurrent control. However, none of the five chemicals was able to induce a clear and reproducible linear dose-dependent increase in micronucleus frequencies in this assay. Generally, mutagenic activity of the chemicals was found in the absence of severe cytotoxicity and/or cell cycle delay. The DNA breakage capacity and the cytotoxicity of these chemicals were also assessed in the alkaline single cell gel (SCG) electrophoresis test (comet assay) with and without S9-mix in isolated human lymphocytes. All chemical compounds induced DNA breakage, in the presence or absence of the metabolic activation system, at the doses tested. The data showed that the DNA reactivity of the chemicals increased with increasing degree of halogenation. The results of the present work suggested that the comet assay might be a more suitable and sensitive screening method than the micronucleus test for this particular class of compound. However, both assays do detect different endpoints.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mixed disulfides from disulfiram inhibit the benzo[a]pyrene induced mutagenesis Melatonin and radioprotection from genetic damage: In vivo/in vitro studies with human volunteers Stability of benzo[a]pyrene DNA adducts in rat tissues during their long-term storage at − 20°C or − 80°C Quantification of epithelial cell micronuclei by fluorescence in situ hybridization (FISH) in mortuary science students exposed to formaldehyde Lack of genotoxicity of piperonyl butoxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1