神经网络与贝叶斯识别方法在多发性硬化症脑干三叉神经诱发电位评估中的比较

Hugo Gutermana , Youval Nehmadi , Andrei Chistyakov , Jean F. Soustiel , Moshe Feinsod
{"title":"神经网络与贝叶斯识别方法在多发性硬化症脑干三叉神经诱发电位评估中的比较","authors":"Hugo Gutermana ,&nbsp;Youval Nehmadi ,&nbsp;Andrei Chistyakov ,&nbsp;Jean F. Soustiel ,&nbsp;Moshe Feinsod","doi":"10.1016/S0020-7101(96)01211-1","DOIUrl":null,"url":null,"abstract":"<div><p>This article describes the application of Multi-Layer Perceptron (MLP), Probabilistic Neural Network and Kohonen's Learning Vector Quantization to the problem of diagnosing Multiple Sclerosis. The classification information is obtained from brainstem trigeminal evoked potential. The performance of the neural networks based classifiers is compared with that of the human experts and the Bayes classifier. The ability of the MLP classifier to generalize is far better than that of the Bayes classifier. The efficiency of the neural network based classifiers in conjunction with several types of well-known evoked potential features, such as Fourier transform space, latency and temporal wave, is examined. Although a large clinical data base would be necessary, before this approach can be fully validated, the initial results are promising.</p></div>","PeriodicalId":75935,"journal":{"name":"International journal of bio-medical computing","volume":"43 3","pages":"Pages 203-213"},"PeriodicalIF":0.0000,"publicationDate":"1996-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0020-7101(96)01211-1","citationCount":"10","resultStr":"{\"title\":\"A comparison of neural network and Bayes recognition approaches in the evaluation of the brainstem trigeminal evoked potentials in multiple sclerosis\",\"authors\":\"Hugo Gutermana ,&nbsp;Youval Nehmadi ,&nbsp;Andrei Chistyakov ,&nbsp;Jean F. Soustiel ,&nbsp;Moshe Feinsod\",\"doi\":\"10.1016/S0020-7101(96)01211-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article describes the application of Multi-Layer Perceptron (MLP), Probabilistic Neural Network and Kohonen's Learning Vector Quantization to the problem of diagnosing Multiple Sclerosis. The classification information is obtained from brainstem trigeminal evoked potential. The performance of the neural networks based classifiers is compared with that of the human experts and the Bayes classifier. The ability of the MLP classifier to generalize is far better than that of the Bayes classifier. The efficiency of the neural network based classifiers in conjunction with several types of well-known evoked potential features, such as Fourier transform space, latency and temporal wave, is examined. Although a large clinical data base would be necessary, before this approach can be fully validated, the initial results are promising.</p></div>\",\"PeriodicalId\":75935,\"journal\":{\"name\":\"International journal of bio-medical computing\",\"volume\":\"43 3\",\"pages\":\"Pages 203-213\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0020-7101(96)01211-1\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of bio-medical computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020710196012111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of bio-medical computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020710196012111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文介绍了多层感知器(MLP)、概率神经网络和Kohonen学习向量量化在多发性硬化症诊断中的应用。分类信息来源于脑干三叉诱发电位。将基于神经网络的分类器与人类专家和贝叶斯分类器的性能进行了比较。MLP分类器的泛化能力远远优于贝叶斯分类器。结合几种已知的诱发电位特征,如傅里叶变换空间、延迟和时间波,研究了基于神经网络的分类器的效率。虽然需要大量的临床数据库,但在这种方法得到充分验证之前,初步结果是有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comparison of neural network and Bayes recognition approaches in the evaluation of the brainstem trigeminal evoked potentials in multiple sclerosis

This article describes the application of Multi-Layer Perceptron (MLP), Probabilistic Neural Network and Kohonen's Learning Vector Quantization to the problem of diagnosing Multiple Sclerosis. The classification information is obtained from brainstem trigeminal evoked potential. The performance of the neural networks based classifiers is compared with that of the human experts and the Bayes classifier. The ability of the MLP classifier to generalize is far better than that of the Bayes classifier. The efficiency of the neural network based classifiers in conjunction with several types of well-known evoked potential features, such as Fourier transform space, latency and temporal wave, is examined. Although a large clinical data base would be necessary, before this approach can be fully validated, the initial results are promising.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Method for Diagnosing in Large Medical Expert Systems Based on Causal Probabilistic Networks Subject index Volume contents Editorial Author index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1