{"title":"脑血管反应性:内皮/血小板/白细胞相互作用的作用。","authors":"S Akopov, R Sercombe, J Seylaz","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In the last two decades, a tremendous amount of knowledge has been accumulated in various fields of biomedical research that discloses mechanisms of platelet/leukocyte/endothelium interactions. Occupying a strategically important location between circulating blood and underlying tissues, the endothelium effectively modulates both the functional state of the blood cells and the tone of vascular smooth muscle by generating or metabolizing a host of humoral substances. Under normal conditions, the endothelium releases agents with predominantly vasodilator and antiaggregant/anticoagulant activity that prevent thrombotic and angiospastic disorders. However, a variety of pathophysiological stimuli may trigger endothelial reorganization with the expression of different prothrombotic factors and activation of platelets and leukocytes that, combined, leads to blood cell adhesion to the endothelial monolayer, aggregation as thrombi, and the formation of numerous spasmogenic substances. Activation of the blood cells in the vicinity of the endothelium may induce endothelial dysfunction/injury, resulting in impairment of normal endothelial antispasmodic control. Within the microcirculatory bed, intravascular activation of the blood cells leads to scattered microvessel plugging, increased vascular permeability, edema formation, and cytotoxic actions of blood cell-released agents on the underlying tissue. A growing body of evidence suggests that these processes may be involved in pathophysiological cerebrovascular reactions including symptomatic angiospasm following subarachnoid hemorrhage, segmental occlusive constriction in atherosclerotic cerebral arteries, and constrictive vasomotion in microvessels. A perturbation in the delicate equilibrium between blood cells and endothelium in the microcirculation seems to be a factor aggravating ischemic brain damage or even primarily causing focal cerebral ischemia and scattered microinfarctions. Increased predisposition to these pathophysiologic events might influence unfavorably the effects of risk factors such as hypercholesterolemia, hypertension, and diabetes on cerebrovascular morbidity and mortality. Although the importance of blood cell/endothelium imbalance appears to be clear, its pharmacologic regulation is not sufficiently established. Some drugs have been demonstrated to limit platelet and/or leukocyte activity and protect the endothelial defense mechanisms, but the optimal therapeutic strategy has yet to be elaborated.</p>","PeriodicalId":9739,"journal":{"name":"Cerebrovascular and brain metabolism reviews","volume":"8 1","pages":"11-94"},"PeriodicalIF":0.0000,"publicationDate":"1996-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cerebrovascular reactivity: role of endothelium/platelet/leukocyte interactions.\",\"authors\":\"S Akopov, R Sercombe, J Seylaz\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the last two decades, a tremendous amount of knowledge has been accumulated in various fields of biomedical research that discloses mechanisms of platelet/leukocyte/endothelium interactions. Occupying a strategically important location between circulating blood and underlying tissues, the endothelium effectively modulates both the functional state of the blood cells and the tone of vascular smooth muscle by generating or metabolizing a host of humoral substances. Under normal conditions, the endothelium releases agents with predominantly vasodilator and antiaggregant/anticoagulant activity that prevent thrombotic and angiospastic disorders. However, a variety of pathophysiological stimuli may trigger endothelial reorganization with the expression of different prothrombotic factors and activation of platelets and leukocytes that, combined, leads to blood cell adhesion to the endothelial monolayer, aggregation as thrombi, and the formation of numerous spasmogenic substances. Activation of the blood cells in the vicinity of the endothelium may induce endothelial dysfunction/injury, resulting in impairment of normal endothelial antispasmodic control. Within the microcirculatory bed, intravascular activation of the blood cells leads to scattered microvessel plugging, increased vascular permeability, edema formation, and cytotoxic actions of blood cell-released agents on the underlying tissue. A growing body of evidence suggests that these processes may be involved in pathophysiological cerebrovascular reactions including symptomatic angiospasm following subarachnoid hemorrhage, segmental occlusive constriction in atherosclerotic cerebral arteries, and constrictive vasomotion in microvessels. A perturbation in the delicate equilibrium between blood cells and endothelium in the microcirculation seems to be a factor aggravating ischemic brain damage or even primarily causing focal cerebral ischemia and scattered microinfarctions. Increased predisposition to these pathophysiologic events might influence unfavorably the effects of risk factors such as hypercholesterolemia, hypertension, and diabetes on cerebrovascular morbidity and mortality. Although the importance of blood cell/endothelium imbalance appears to be clear, its pharmacologic regulation is not sufficiently established. Some drugs have been demonstrated to limit platelet and/or leukocyte activity and protect the endothelial defense mechanisms, but the optimal therapeutic strategy has yet to be elaborated.</p>\",\"PeriodicalId\":9739,\"journal\":{\"name\":\"Cerebrovascular and brain metabolism reviews\",\"volume\":\"8 1\",\"pages\":\"11-94\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerebrovascular and brain metabolism reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebrovascular and brain metabolism reviews","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cerebrovascular reactivity: role of endothelium/platelet/leukocyte interactions.
In the last two decades, a tremendous amount of knowledge has been accumulated in various fields of biomedical research that discloses mechanisms of platelet/leukocyte/endothelium interactions. Occupying a strategically important location between circulating blood and underlying tissues, the endothelium effectively modulates both the functional state of the blood cells and the tone of vascular smooth muscle by generating or metabolizing a host of humoral substances. Under normal conditions, the endothelium releases agents with predominantly vasodilator and antiaggregant/anticoagulant activity that prevent thrombotic and angiospastic disorders. However, a variety of pathophysiological stimuli may trigger endothelial reorganization with the expression of different prothrombotic factors and activation of platelets and leukocytes that, combined, leads to blood cell adhesion to the endothelial monolayer, aggregation as thrombi, and the formation of numerous spasmogenic substances. Activation of the blood cells in the vicinity of the endothelium may induce endothelial dysfunction/injury, resulting in impairment of normal endothelial antispasmodic control. Within the microcirculatory bed, intravascular activation of the blood cells leads to scattered microvessel plugging, increased vascular permeability, edema formation, and cytotoxic actions of blood cell-released agents on the underlying tissue. A growing body of evidence suggests that these processes may be involved in pathophysiological cerebrovascular reactions including symptomatic angiospasm following subarachnoid hemorrhage, segmental occlusive constriction in atherosclerotic cerebral arteries, and constrictive vasomotion in microvessels. A perturbation in the delicate equilibrium between blood cells and endothelium in the microcirculation seems to be a factor aggravating ischemic brain damage or even primarily causing focal cerebral ischemia and scattered microinfarctions. Increased predisposition to these pathophysiologic events might influence unfavorably the effects of risk factors such as hypercholesterolemia, hypertension, and diabetes on cerebrovascular morbidity and mortality. Although the importance of blood cell/endothelium imbalance appears to be clear, its pharmacologic regulation is not sufficiently established. Some drugs have been demonstrated to limit platelet and/or leukocyte activity and protect the endothelial defense mechanisms, but the optimal therapeutic strategy has yet to be elaborated.