生物医学应用的二氧化钛聚合物复合材料。

J Peña, M Vallet-Regí, J San Román
{"title":"生物医学应用的二氧化钛聚合物复合材料。","authors":"J Peña,&nbsp;M Vallet-Regí,&nbsp;J San Román","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Composite hydrogels of poly(acrylic acid) (PAA) and poly-(methyl metacrylate) (PMMA) reinforced with a bioceramic, TiO2, have been prepared by reactive moulding from a mixture of the bioceramic with PMMA beads and acrylic acid. Cylindrical specimens with various TiO2-polymer compositions, but a constant 3:1 PAA/PMMA ratio were obtained, and their corresponding swelling behavior was followed at pH = 7.0 and pH = 8.0 in buffered solution at 37 degrees C. The composition and structure of the composites prepared was studied by thermogravimetry, 1H-NMR spectroscopy and scanning electron microscopy. The composites prepared present a considerable consistency, even in hydrated media, since their swelling behavior is rather sensitive to the pH of the media. Specific polar interactions of the carboxylic groups of the hydrophilic polymer component PAA with the surface of TiO2 particles, modulate the behavior of the composites against the hydration processes at different pH.</p>","PeriodicalId":15159,"journal":{"name":"Journal of biomedical materials research","volume":"35 1","pages":"129-34"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TiO2-polymer composites for biomedical applications.\",\"authors\":\"J Peña,&nbsp;M Vallet-Regí,&nbsp;J San Román\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Composite hydrogels of poly(acrylic acid) (PAA) and poly-(methyl metacrylate) (PMMA) reinforced with a bioceramic, TiO2, have been prepared by reactive moulding from a mixture of the bioceramic with PMMA beads and acrylic acid. Cylindrical specimens with various TiO2-polymer compositions, but a constant 3:1 PAA/PMMA ratio were obtained, and their corresponding swelling behavior was followed at pH = 7.0 and pH = 8.0 in buffered solution at 37 degrees C. The composition and structure of the composites prepared was studied by thermogravimetry, 1H-NMR spectroscopy and scanning electron microscopy. The composites prepared present a considerable consistency, even in hydrated media, since their swelling behavior is rather sensitive to the pH of the media. Specific polar interactions of the carboxylic groups of the hydrophilic polymer component PAA with the surface of TiO2 particles, modulate the behavior of the composites against the hydration processes at different pH.</p>\",\"PeriodicalId\":15159,\"journal\":{\"name\":\"Journal of biomedical materials research\",\"volume\":\"35 1\",\"pages\":\"129-34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以聚丙烯酸甲酯(PMMA)微珠和丙烯酸为原料,通过反应模塑法制备了生物陶瓷(TiO2)增强的聚丙烯酸(PAA)和聚甲基丙烯酸甲酯(PMMA)复合水凝胶。采用热重法、核磁共振波谱法和扫描电镜对制备的复合材料的组成和结构进行了研究,得到了具有不同tio2 -聚合物组成的圆柱形试样,但PAA/PMMA比例恒定为3:1,在37℃缓冲溶液中pH = 7.0和pH = 8.0时,其相应的膨胀行为。即使在水合介质中,所制备的复合材料也具有相当的一致性,因为它们的膨胀行为对介质的pH相当敏感。亲水聚合物组分PAA的羧基与TiO2颗粒表面的特定极性相互作用调节了复合材料在不同pH下对水化过程的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TiO2-polymer composites for biomedical applications.

Composite hydrogels of poly(acrylic acid) (PAA) and poly-(methyl metacrylate) (PMMA) reinforced with a bioceramic, TiO2, have been prepared by reactive moulding from a mixture of the bioceramic with PMMA beads and acrylic acid. Cylindrical specimens with various TiO2-polymer compositions, but a constant 3:1 PAA/PMMA ratio were obtained, and their corresponding swelling behavior was followed at pH = 7.0 and pH = 8.0 in buffered solution at 37 degrees C. The composition and structure of the composites prepared was studied by thermogravimetry, 1H-NMR spectroscopy and scanning electron microscopy. The composites prepared present a considerable consistency, even in hydrated media, since their swelling behavior is rather sensitive to the pH of the media. Specific polar interactions of the carboxylic groups of the hydrophilic polymer component PAA with the surface of TiO2 particles, modulate the behavior of the composites against the hydration processes at different pH.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A comparative study of in vitro apatite deposition on heat-, H(2)O(2)-, and NaOH-treated titanium surfaces. Prophylaxis of implant-related staphylococcal infections using tobramycin-containing bone cement. Effects of geometry of hydroxyapatite as a cell substratum in BMP-induced ectopic bone formation. Well-defined sulfobetaine-based statistical copolymers as potential antibioadherent coatings. Platelet adhesion and procoagulant activity induced by contact with radiofrequency glow discharge polymers: roles of adsorbed fibrinogen and vWF.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1