{"title":"人类心脏毛细血管网的几何结构。","authors":"K Rakusan, N Cicutti, J Spatenka, M Samánek","doi":"10.1159/000179203","DOIUrl":null,"url":null,"abstract":"<p><p>The geometry of the coronary capillary bed in human hearts was studied using samples obtained during cardiac surgery of children operated for tetralogy of Fallot and samples from fresh normal hearts used for valve harvesting. The results revealed a similar coronary capillary density and heterogeneity of capillary spacing in samples from both groups. A double-staining method was used to distinguish between capillary segments close to the feeding arteriole (proximal capillaries) and segments distant from the arteriole (distal capillaries). In both groups of hearts, capillary segment length was consistently shorter on the venular than the arteriolar portion of the capillary. Similarly, capillary domain areas were also smaller and the resulting capillary supply unit was smaller along venular portions compared to arteriolar regions of the capillary bed. This distinctive geometry would provide advantageous geometric conditions for tissue oxygen supply.</p>","PeriodicalId":14035,"journal":{"name":"International journal of microcirculation, clinical and experimental","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000179203","citationCount":"6","resultStr":"{\"title\":\"Geometry of the capillary net in human hearts.\",\"authors\":\"K Rakusan, N Cicutti, J Spatenka, M Samánek\",\"doi\":\"10.1159/000179203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The geometry of the coronary capillary bed in human hearts was studied using samples obtained during cardiac surgery of children operated for tetralogy of Fallot and samples from fresh normal hearts used for valve harvesting. The results revealed a similar coronary capillary density and heterogeneity of capillary spacing in samples from both groups. A double-staining method was used to distinguish between capillary segments close to the feeding arteriole (proximal capillaries) and segments distant from the arteriole (distal capillaries). In both groups of hearts, capillary segment length was consistently shorter on the venular than the arteriolar portion of the capillary. Similarly, capillary domain areas were also smaller and the resulting capillary supply unit was smaller along venular portions compared to arteriolar regions of the capillary bed. This distinctive geometry would provide advantageous geometric conditions for tissue oxygen supply.</p>\",\"PeriodicalId\":14035,\"journal\":{\"name\":\"International journal of microcirculation, clinical and experimental\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000179203\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of microcirculation, clinical and experimental\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000179203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of microcirculation, clinical and experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000179203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The geometry of the coronary capillary bed in human hearts was studied using samples obtained during cardiac surgery of children operated for tetralogy of Fallot and samples from fresh normal hearts used for valve harvesting. The results revealed a similar coronary capillary density and heterogeneity of capillary spacing in samples from both groups. A double-staining method was used to distinguish between capillary segments close to the feeding arteriole (proximal capillaries) and segments distant from the arteriole (distal capillaries). In both groups of hearts, capillary segment length was consistently shorter on the venular than the arteriolar portion of the capillary. Similarly, capillary domain areas were also smaller and the resulting capillary supply unit was smaller along venular portions compared to arteriolar regions of the capillary bed. This distinctive geometry would provide advantageous geometric conditions for tissue oxygen supply.