多参数时间过程预测是基于案例推理和数据时间抽象的方法。

R Schmidt, B Heindl, B Pollwein, L Gierl
{"title":"多参数时间过程预测是基于案例推理和数据时间抽象的方法。","authors":"R Schmidt,&nbsp;B Heindl,&nbsp;B Pollwein,&nbsp;L Gierl","doi":"10.3109/14639239709010896","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper we describe an approach to utilize Case-Based Reasoning methods for trend prognoses for medical problems. Since using conventional methods for reasoning over time does not fit for course predictions without medical knowledge of typical course pattern, we have developed abstraction methods suitable for integration into our Case-Based Reasoning system ICONS. These methods combine medical experience with prognoses of multiparametric courses. We have chosen the monitoring of the kidney function in an Intensive Care Unit (ICU) setting as an example for diagnostic problems. On the ICU, the monitoring system NIMON provides a daily report based on current measured and calculated kidney function parameters. We abstract these parameters to a daily kidney function state. Subsequently, we use these states to generate course-characteristic trend descriptions of the renal function over the course of time. Using Case-Based Reasoning retrieval methods, we search in the case base for courses similar to the current trend descriptions. Finally, we present the current course together with similar courses as comparisons and as possible prognoses to the user.</p>","PeriodicalId":76132,"journal":{"name":"Medical informatics = Medecine et informatique","volume":"22 3","pages":"237-50"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/14639239709010896","citationCount":"12","resultStr":"{\"title\":\"Multiparametric time course prognoses by means of case-based reasoning and abstractions of data and time.\",\"authors\":\"R Schmidt,&nbsp;B Heindl,&nbsp;B Pollwein,&nbsp;L Gierl\",\"doi\":\"10.3109/14639239709010896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper we describe an approach to utilize Case-Based Reasoning methods for trend prognoses for medical problems. Since using conventional methods for reasoning over time does not fit for course predictions without medical knowledge of typical course pattern, we have developed abstraction methods suitable for integration into our Case-Based Reasoning system ICONS. These methods combine medical experience with prognoses of multiparametric courses. We have chosen the monitoring of the kidney function in an Intensive Care Unit (ICU) setting as an example for diagnostic problems. On the ICU, the monitoring system NIMON provides a daily report based on current measured and calculated kidney function parameters. We abstract these parameters to a daily kidney function state. Subsequently, we use these states to generate course-characteristic trend descriptions of the renal function over the course of time. Using Case-Based Reasoning retrieval methods, we search in the case base for courses similar to the current trend descriptions. Finally, we present the current course together with similar courses as comparisons and as possible prognoses to the user.</p>\",\"PeriodicalId\":76132,\"journal\":{\"name\":\"Medical informatics = Medecine et informatique\",\"volume\":\"22 3\",\"pages\":\"237-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3109/14639239709010896\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical informatics = Medecine et informatique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3109/14639239709010896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical informatics = Medecine et informatique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/14639239709010896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在本文中,我们描述了一种利用基于案例的推理方法对医疗问题进行趋势预测的方法。由于在没有典型课程模式的医学知识的情况下,使用传统方法进行时间推理不适合课程预测,因此我们开发了适合集成到基于案例的推理系统图标中的抽象方法。这些方法结合了医学经验和多参数病程的预后。我们选择在重症监护病房(ICU)设置肾功能监测作为诊断问题的一个例子。在ICU,监测系统NIMON根据当前测量和计算的肾功能参数提供每日报告。我们将这些参数抽象为日常肾功能状态。随后,我们使用这些状态来生成随时间变化的肾功能的病程特征趋势描述。使用基于案例的推理检索方法,我们在案例库中搜索与当前趋势描述相似的课程。最后,我们将当前的课程与类似的课程一起呈现给用户,作为比较和尽可能的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiparametric time course prognoses by means of case-based reasoning and abstractions of data and time.

In this paper we describe an approach to utilize Case-Based Reasoning methods for trend prognoses for medical problems. Since using conventional methods for reasoning over time does not fit for course predictions without medical knowledge of typical course pattern, we have developed abstraction methods suitable for integration into our Case-Based Reasoning system ICONS. These methods combine medical experience with prognoses of multiparametric courses. We have chosen the monitoring of the kidney function in an Intensive Care Unit (ICU) setting as an example for diagnostic problems. On the ICU, the monitoring system NIMON provides a daily report based on current measured and calculated kidney function parameters. We abstract these parameters to a daily kidney function state. Subsequently, we use these states to generate course-characteristic trend descriptions of the renal function over the course of time. Using Case-Based Reasoning retrieval methods, we search in the case base for courses similar to the current trend descriptions. Finally, we present the current course together with similar courses as comparisons and as possible prognoses to the user.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hippocrates: an integrated platform for telemedicine applications. A network-based training environment: a medical image processing paradigm. A multi-agent architecture for teaching dermatology. Enhancing security and improving interoperability in healthcare information systems. Backpropagation and adaptive resonance theory in predicting suicidal risk.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1